Publications by authors named "Amey S Puranik"

pH-responsive, polyanionic nanoscale hydrogels were developed for the oral delivery of hydrophobic therapeutics, such as common chemotherapeutic agents. Nanoscale hydrogels were designed to overcome physicochemical and biological barriers associated with oral delivery of hydrophobic therapeutics such as low solubility and poor permeability due to P-glycoprotein related drug efflux. Synthesis of these nanoscale materials was achieved by a robust photoemulsion polymerization method.

View Article and Find Full Text PDF

Treatment of cancer using nanoparticle-based approaches relies on the rational design of carriers with respect to size, charge, and surface properties. Polymer-based nanomaterials, inorganic materials such as gold, iron oxide, and silica as well as carbon based materials such as carbon nanotubes and graphene are being explored extensively for cancer therapy. The challenges associated with the delivery of these nanoparticles depend greatly on the type of cancer and stage of development.

View Article and Find Full Text PDF

Only a few engineered tissues-skin, cartilage, bladder-have achieved clinical success, and biomaterials designed to replace more complex organs are still far from commercial availability. This gap exists in part because biomaterials lack a vascular network to transfer the oxygen and nutrients necessary for survival and integration after transplantation. Thus, generation of a functional vasculature is essential to the clinical success of engineered tissue constructs and remains a key challenge for regenerative medicine.

View Article and Find Full Text PDF

One of the most common medical interventions to reopen an occluded vessel is the implantation of a coronary stent. While this method of treatment is effective initially, restenosis, or the re-narrowing of the artery frequently occurs largely due to neointimal hyperplasia of smooth muscle cells. Drug eluting stents were developed in order to provide local, site-specific, controlled release of drugs that can inhibit neointima formation.

View Article and Find Full Text PDF