Artificial Intelligence (AI) is an emerging tool that could be leveraged to identify the effective conservation solutions demanded by the urgent biodiversity crisis. We present the results of our horizon scan of AI applications likely to significantly benefit biological conservation. An international panel of conservation scientists and AI experts identified 21 key ideas.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2019
Consumption of globally traded agricultural commodities like soy and palm oil is one of the primary causes of deforestation and biodiversity loss in some of the world's most species-rich ecosystems. However, the complexity of global supply chains has confounded efforts to reduce impacts. Companies and governments with sustainability commitments struggle to understand their own sourcing patterns, while the activities of more unscrupulous actors are conveniently masked by the opacity of global trade.
View Article and Find Full Text PDFConservation policy decisions can suffer from a lack of evidence, hindering effective decision-making. In nature conservation, studies investigating why policy is often not evidence-informed have tended to focus on Western democracies, with relatively small samples. To understand global variation and challenges better, we established a global survey aimed at identifying top barriers and solutions to the use of conservation science in policy.
View Article and Find Full Text PDFKnowing how much biodiversity is captured by protected areas (PAs) is important to meeting country commitments to international conservation agreements, such as the Convention on Biological Diversity, and analyzing gaps in species coverage by PAs contributes greatly to improved locating of new PAs and conservation of species. Regardless of their importance, global gap analyses have been conducted only for a few taxonomic groups (e.g.
View Article and Find Full Text PDFIn 2008, a group of conservation scientists compiled a list of 100 priority questions for the conservation of the world's biodiversity. However, now almost a decade later, no one has yet published a study gauging how much progress has been made in addressing these 100 high-priority questions in the peer-reviewed literature. We took a first step toward reexamining the 100 questions to identify key knowledge gaps that remain.
View Article and Find Full Text PDFThe continuous increase in the intensity and extent of anthropogenic artificial light has significantly shaped Earth's nighttime environment. This environmental change has effects across the natural world, with consequences for organismal physiology and behaviour and the abundances and distributions of species. Here, we evaluate for the first time the relations between the spatio-temporal patterns of anthropogenic nighttime light and the distribution of terrestrial mammals, one of the most endangered species groups and one that expresses varying time partitioning strategies.
View Article and Find Full Text PDFAgroecosystems have traditionally been considered incompatible with biological conservation goals, and often been excluded from spatial conservation prioritization strategies. The consequences for the representativeness of identified priority areas have been little explored. Here, we evaluate these for biodiversity and carbon storage representation when agricultural land areas are excluded from a spatial prioritization strategy for South America.
View Article and Find Full Text PDFProtected areas are increasingly considered to play a key role in the global maintenance of ecosystem processes and the ecosystem services they provide. It is thus vital to assess the extent to which existing protected area systems represent those services. Here, for the first time, we document the effectiveness of the current Chilean protected area system and its planned extensions in representing both ecosystem services (plant productivity, carbon storage and agricultural production) and biodiversity.
View Article and Find Full Text PDF