In recent years, numerous image encryption schemes have been developed that demonstrate different levels of effectiveness in terms of robust security and real-time applications. While a few of them outperform in terms of robust security, others perform well for real-time applications where less processing time is required. Balancing these two aspects poses a challenge, aiming to achieve efficient encryption without compromising security.
View Article and Find Full Text PDFAccording to the standard paradigm, white box cryptographic primitives are used to block black box attacks and protect sensitive information. This is performed to safeguard the protected information and keys against black box assaults. An adversary in such a setting is aware of the method and can analyze many system inputs and outputs, but is blind to the specifics of how a critical instantiation primitive is implemented.
View Article and Find Full Text PDFThere is no question about the value that digital signal processing brings to the area of biomedical research. DSP processors are used to sample and process the analog inputs that are received from a human organ. These inputs come from the organ itself.
View Article and Find Full Text PDFThe place of public key cryptography (PKC) in guaranteeing the security of wireless networks under human-centered IoT environments cannot be overemphasized. PKC uses the idea of paired keys that are mathematically dependent but independent in practice. In PKC, each communicating party needs the public key and the authorized digital certificate of the other party to achieve encryption and decryption.
View Article and Find Full Text PDFSigncryption schemes leveraging chaotic constructions have garnered significant research interest in recent years. These schemes have proffered practical solutions towards addressing the vast security vulnerabilities in Electronic Cash Systems (ECS). The schemes can seamlessly perform message confidentiality and authentication simultaneously.
View Article and Find Full Text PDFIn a channel shared by several nodes, the scheduling algorithm is a key factor to avoiding collisions in the random access-based approach. Commonly, scheduling algorithms can be used to enhance network performance to meet certain requirements. Therefore, in this paper we propose a Delay-Aware Media Access Control (DAMAC) protocol for monitoring time-sensitive applications over multi-hop in Underwater Acoustic Sensor Networks (UASNs), which relies on the random access-based approach where each node uses Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) to determine channel status, switches nodes on and off to conserve energy, and allows concurrent transmissions to improve the underwater communication in the UASNs.
View Article and Find Full Text PDF