In this paper, we investigate the role of the chromatic information in CT scans in COVID-19 detection and we aim to confirm the inclusion of the artificial intelligence findings in assisting COVID-19 diagnosis. This paper proposes a freezing-based convolutional neural network learning using a morphological transformation of CT images to classify COVID-19 cohorts to help in prognostication pneumonia disease monitoring. The experiments made on the collected CT images from previous works have proven to be a powerful aid to recognize the lesions in CT images which works at comprehensively greater accuracy and speed.
View Article and Find Full Text PDF