Carbon nanotubes (CNTs) are widely used to adsorb organic pollutants from wastewater due to their porous structure, large specific surface area, and unique physical and chemical properties. Examining the interactions between pollutant molecules and carbon nanotubes is an important topic in the applications of nanotubes for the removal of pollutants. In this study, molecular dynamics (MD) and metadynamics simulations were used to investigate the adsorption mechanism of Dichlorodiphenyltrichloroethane (DDT) pollutants on carbon nanotubes.
View Article and Find Full Text PDFDue to the increasing demand for electrochemical energy storage, rechargeable lithium-ion batteries (LIBs) are gaining more and more attention. However, much research still needs to be conducted to enhance their cycling and storage capacity. Recently, computational studies have provided valuable information for LIB development, which is very difficult and expensive to obtain experimentally.
View Article and Find Full Text PDFIn this research, molecular dynamics (MD) simulation is used to investigate the efficiency of carbon nanotubes (CNT) and boron nitride nanotubes (BNNT) in removing lead ions from contaminated waters. Then the effect of functionalizing nanotubes with -COO- and COOH- functional groups and the nanotubes' absorption performance of two different concentrations of lead ions are studied. To better evaluate adsorption process, the set of descriptors, such as interaction energies, radial distribution function, etc.
View Article and Find Full Text PDFProdrug and drug delivery systems are two effective strategies for improving the selectivity of chemotherapeutics. Herein, via molecular dynamics (MD) simulation and free energy calculation, the effectiveness of the graphene oxide (GO) decorated with the pH-sensitive prodrug (PD) molecules in cancer therapy is investigated. PEI-CA-DOX (prodrug) was loaded onto the GO surface, in which the hydrogen bonding and pi-pi stacking interactions play the main role in the stability of the GO-PD complex.
View Article and Find Full Text PDFTwo-dimensional (2D) nanomaterials can improve drug delivery by reducing toxicity, increasing bioavailability and boosting efficacy. In this study, the simultaneous use of transition metal carbides and nitrides (MXenes) along with copper (II) benzene-1, 3, 5-tricarboxylate metal-organic framework (Cu - BTC/MOF) as attractive nanocarriers are investigated for loading and delivering curcumin (CUR) and paclitaxel (PTX) drugs to cancer cells. The efficiency of surface termination (bare and oxygen) in the adsorption of PTX and CUR drugs and the co-loading of these two drugs are evaluated.
View Article and Find Full Text PDFEvaluation of interaction mechanism between 2-dimensional (2D) nanomaterials and cell membranes is a critical issue in providing guidelines for biomedical applications. Recent progress in computer-aided molecular design tools, especially molecular dynamics (MD) simulation, afford a cost-effective approach to achieving this goal. In this work, based on this hypothesis, by utilizing theoretical methods including MD simulation and free energy calculations, a process is evaluated in which the Doxorubicin (DOX)-loaded onto carbon nitride (CN) nanosheet faced with bilayer membrane.
View Article and Find Full Text PDF