In order to achieve preparation of cross-linked (CL) potato starch with the maximum degree of substitution, freezing pre-treatment (FS) in different modes as three days freezing (3D), two freezing-thawing cycles (3D + 3D) and 6 days freezing (6D) were conducted. Thereafter, native, frozen and cross-linked starches were characterized for morphological, structural and pasting properties as well as alkaline and intrinsic viscosity. Regarding obtained result, freezing pre-treatment as 3D + 3D was found to be an efficient method to achieve high level of cross-linking than native and other modes of freezing pre-treatments when exposed to POCl reagent.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2019
The discovery of room-temperature ferromagnetism of hydrogenated epitaxial graphene on silicon carbide challenges for a fundamental understanding of this long-range phenomenon. Carbon allotropes with their dispersive electron states at the Fermi level and a small spin-orbit coupling are not an obvious candidate for ferromagnetism. Here we show that the origin of ferromagnetism in hydrogenated epitaxial graphene with a relatively high Curie temperature (>300 K) lies in the formation of curved specific carbon site regions in the graphene layer, induced by the underlying Si-dangling bonds and by the hydrogen bonding.
View Article and Find Full Text PDF