J Exp Clin Cancer Res
November 2024
Background: Approximately half of all human cancers harbour mutations in the p53 gene, leading to the generation of neomorphic p53 mutant proteins. These mutants can exert gain-of-function (GOF) effects, potentially promoting tumour progression. However, the clinical significance of p53 GOF mutations, as well as the selectivity of individual variants, remains controversial and unclear.
View Article and Find Full Text PDFDysregulated mitochondrial fusion and fission has been implicated in the pathogenesis of numerous diseases. We have identified a novel function of the p53 family protein TAp73 in regulating mitochondrial dynamics. TAp73 regulates the expression of Optic Atrophy 1 (OPA1), a protein responsible for controlling mitochondrial fusion, cristae biogenesis and electron transport chain function.
View Article and Find Full Text PDFCell death is a fundamental process in health and disease. Emerging research shows the existence of numerous distinct cell death modalities with similar and intertwined signaling pathways, but resulting in different cellular outcomes, raising the need to understand the decision-making steps during cell death signaling. Paracetamol (Acetaminophen, APAP)-induced hepatocyte death includes several apoptotic processes but eventually is executed by oncotic necrosis without any caspase activation.
View Article and Find Full Text PDFMutations in the p53 gene compromise its role as guardian of genomic integrity, yielding predominantly missense p53 mutant proteins. The gain-of-function hypothesis has long suggested that these mutant proteins acquire new oncogenic properties; however, recent studies challenge this notion, indicating that targeting these mutants may not impact the fitness of cancer cells. Mounting evidence indicates that tumorigenesis involves a cooperative interplay between driver mutations and cellular state, influenced by developmental stage, external insults, and tissue damage.
View Article and Find Full Text PDFWe show that lasing in flat-band lattices can be stabilized by means of the geometrical properties of the Bloch states, in settings where the single-particle dispersion is flat in both its real and imaginary parts. We illustrate a general projection method and compute the collective excitations, which display a diffusive behavior ruled by quantum geometry through a peculiar coefficient involving gain, losses and interactions, and entailing resilience against modulational instabilities. Then, we derive an equation of motion for the phase dynamics and identify a Kardar-Parisi-Zhang term of geometric origin.
View Article and Find Full Text PDFRenal cell carcinoma originates from the lining of the proximal convoluted renal tubule and represents the most common type of kidney cancer. Risk factors and comorbidities might be associated to renal cell carcinoma, while a small fraction of 2-3% emerges from patients with predisposing cancer syndromes, typically associated to hereditary mutations in VHL, folliculin, fumarate hydratase or MET genes. Here, we report a case of renal cell carcinoma in patient with concurrent germline mutations in BRCA1 and RAD51 genes.
View Article and Find Full Text PDFCell Death Differ
January 2025
Genomic instability, a hallmark of cancer, is a direct consequence of the inactivation of the tumor suppressor protein p53. Genetically modified mouse models and human tumor samples have revealed that p53 loss results in extensive chromosomal abnormalities, from copy number alterations to structural rearrangements. In this perspective article we explore the multifaceted relationship between p53, genomic stability, and epigenetic control, highlighting its significance in cancer biology.
View Article and Find Full Text PDFWe investigate the finite-size origin of the coherence time (or equivalently of its inverse, the emission linewidth) of a spatially extended, one-dimensional nonequilibrium condensate. We show that the well-known Schawlow-Townes scaling of laser theory, possibly including the Henry broadening factor, only holds for small system sizes, while in larger systems the linewidth displays a novel scaling determined by Kardar-Parisi-Zhang physics. This is shown to lead to an opposite dependence of the coherence time on the optical nonlinearity in the two cases.
View Article and Find Full Text PDFTo characterize the hits from a phenotypic neurotoxicity screen, we obtained transcriptomics data for valinomycin, diethylstilbestrol, colchicine, rotenone, 1-methyl-4-phenylpyridinium (MPP), carbaryl and berberine (Ber). For all compounds, the concentration triggering neurite degeneration correlated with the onset of gene expression changes. The mechanistically diverse toxicants caused similar patterns of gene regulation: the responses were dominated by cell de-differentiation and a triggering of canonical stress response pathways driven by ATF4 and NRF2.
View Article and Find Full Text PDFHuman health is determined both by genetics (G) and environment (E). This is clearly illustrated in groups of individuals who are exposed to the same environmental factor showing differential responses. A quantitative measure of the gene-environment interactions (GxE) effects has not been developed and in some instances, a clear consensus on the concept has not even been reached; for example, whether cancer is predominantly emerging from "bad luck" or "bad lifestyle" is still debated.
View Article and Find Full Text PDFTo transfer toxicological findings from model systems, e.g. animals, to humans, standardized safety factors are applied to account for intra-species and inter-species variabilities.
View Article and Find Full Text PDFThe development of genomic technologies over the past decades has enabled identification of genetic variants responsible of disease; occasionally however, protective rare variants emerged. Verweij et al have recently reported genetic variants in CIDEB gene that are protective from liver injury. Here, we briefly summarise the recent findings on the impact of CIDEB variants on liver disease, while emphasizing how phenotype-genotype studies tailored for the identification of "protective" mutations might direct development of prevention and therapeutic strategies for common diseases.
View Article and Find Full Text PDFApoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions.
View Article and Find Full Text PDFProteasome inhibition is associated with parkinsonian pathology in vivo and degeneration of dopaminergic neurons in vitro. We explored here the metabolome (386 metabolites) and transcriptome (3257 transcripts) regulations of human LUHMES neurons, following exposure to MG-132 [100 nM]. This proteasome inhibitor killed cells within 24 h but did not reduce viability for 12 h.
View Article and Find Full Text PDFGene-environment interactions can perturb the epigenome, triggering network alterations that participate in cancer pathogenesis. Integrating epigenomics, transcriptomics, and metabolic analyses with functional perturbation, we show that the tumor suppressor p53 preserves genomic integrity by empowering adequate levels of the universal methyl donor S-adenosylmethionine (SAM). In p53-deficient cells, perturbation of DNA methylation promotes derepression of heterochromatin, massive loss of histone H3-lysine 9 methylation, and consequent upregulation of satellite RNAs that triggers R-loop-associated replication stress and chromosomal aberrations.
View Article and Find Full Text PDFMutations in BAP1 have been identified in a hereditary cancer predisposition syndrome and in sporadic tumours. Individuals carrying familiar BAP1 monoallelic mutations display hypersusceptibility to exposure-associated cancers, such as asbestos-driven mesothelioma, thus BAP1 status has been postulated to participate in gene-environment interaction. Intriguingly, BAP1 functions display also a high degree of tissue dependency, associated to a peculiar cancer spectrum and cell types of specific functions.
View Article and Find Full Text PDFRevealing universal behaviours is a hallmark of statistical physics. Phenomena such as the stochastic growth of crystalline surfaces and of interfaces in bacterial colonies, and spin transport in quantum magnets all belong to the same universality class, despite the great plurality of physical mechanisms they involve at the microscopic level. More specifically, in all these systems, space-time correlations show power-law scalings characterized by universal critical exponents.
View Article and Find Full Text PDFThe understanding of the pathogenesis of renal cell carcinoma led to the development of targeted therapies, which dramatically changed the overall survival rate. Nonetheless, despite innovative lines of therapy accessible to patients, the prognosis remains severe in most cases. Kidney cancer rarely shows mutations in the genes coding for proteins involved in programmed cell death, including p53.
View Article and Find Full Text PDFConfining particles to distances below their de Broglie wavelength discretizes their motional state. This fundamental effect is observed in many physical systems, ranging from electrons confined in atoms or quantum dots to ultracold atoms trapped in optical tweezers. In solid-state photonics, a long-standing goal has been to achieve fully tunable quantum confinement of optically active electron-hole pairs, known as excitons.
View Article and Find Full Text PDFAdaptation of the lipid metabolism participates in cancer pathogenesis, facilitating energy storage and influencing cell fate and control of molecular signalling. The tumour suppressor protein p53 is a molecular hub of cell metabolism, supporting antioxidant capabilities and counteracting oncogene-induced metabolic switch. Despite extensive work has described the p53-dependent metabolic pathways, a global profiling of p53 lipidome is still missing.
View Article and Find Full Text PDFSerine and one-carbon unit metabolisms are essential biochemical pathways implicated in fundamental cellular functions such as proliferation, biosynthesis of important anabolic precursors and in general for the availability of methyl groups. These two distinct but interacting pathways are now becoming crucial in cancer, the de novo cytosolic serine pathway and the mitochondrial one-carbon metabolism. Apart from their role in physiological conditions, such as epithelial proliferation, the serine metabolism alterations are associated to several highly neoplastic proliferative pathologies.
View Article and Find Full Text PDFCancer immunotherapy represents a major advance in the cure of cancer following the dramatic advancements in the development and refinement of chemotherapies and radiotherapies. In the recent decades, together with the development of early diagnostic techniques, immunotherapy has significantly contributed to improving the survival of cancer patients. The immune-checkpoint blockade agents have been proven effective in a significant fraction of standard therapy refractory patients.
View Article and Find Full Text PDFSomatic inactivation of p53 (TP53) mainly occurs as missense mutations that lead to the acquisition of neomorphic mutant protein forms. p53 mutants have been postulated to exert gain-of-function (GOF) effects, including promotion of metastasis and drug tolerance, which generally contribute to the acquisition of the lethal phenotype. Here, by integrating a p53 -dependent transcriptomic analysis with chromatin accessibility (ATAC-seq) profiling, we shed light on the molecular basis of a p53 mutant-dependent drug-tolerant phenotype in pancreatic cancer.
View Article and Find Full Text PDF