The growth of digital pathology over the past decade has opened new research pathways and insights in cancer prediction and prognosis. In particular, there has been a surge in deep learning and computer vision techniques to analyse digital images. Common practice in this area is to use image pre-processing and augmentation to prevent bias and overfitting, creating a more robust deep learning model.
View Article and Find Full Text PDFClinical trials for MET inhibitors have demonstrated limited success for their use in colon cancer (CC). However, clinical efficacy may be obscured by a lack of standardisation in MET assessment for patient stratification. In this study, we aimed to determine the molecular context in which MET is deregulated in CC using a series of genomic and proteomic tests to define MET expression and identify patient subgroups that should be considered in future studies with MET-targeted agents.
View Article and Find Full Text PDFBackground: Immunohistochemical quantification of the immune response is prognostic for colorectal cancer (CRC). Here, we evaluate the suitability of alternative immune classifiers on prognosis and assess whether they relate to biological features amenable to targeted therapy.
Methods: Overall survival by immune (CD3, CD4, CD8, CD20 and FOXP3) and immune-checkpoint (ICOS, IDO-1 and PD-L1) biomarkers in independent CRC cohorts was evaluated.
Multiplex immunofluorescence is a powerful tool for the simultaneous detection of tissue-based biomarkers, revolutionising traditional immunohistochemistry. The Opal methodology allows up to eight biomarkers to be measured concomitantly without cross-reactivity, permitting identification of different cell populations within the tumour microenvironment. In this study, we aimed to validate a multiplex immunofluorescence workflow in two complementary multiplex panels and evaluate the tumour immune microenvironment in colorectal cancer (CRC) formalin-fixed paraffin-embedded tissue.
View Article and Find Full Text PDF