Publications by authors named "Amelie Mendrinna"

Cotton (Gossypium hirsutum) fibres consist of single cells that grow in a highly polarized manner, assumed to be controlled by the cytoskeleton. However, how the cytoskeletal organization and dynamics underpin fibre development remains unexplored. Moreover, it is unclear whether cotton fibres expand via tip growth or diffuse growth.

View Article and Find Full Text PDF

Gene duplications generate new genes that can acquire similar but often diversified functions. Recent studies of gene coexpression networks have indicated that, not only genes, but also pathways can be multiplied and diversified to perform related functions in different parts of an organism. Identification of such diversified pathways, or modules, is needed to expand our knowledge of biological processes in plants and to understand how biological functions evolve.

View Article and Find Full Text PDF

Over the last few decades, our understanding of directed cell growth in different organisms has substantially improved. Tip-growing cells in plants elongate rapidly via targeted deposition of cell wall and membrane material at the cell apex, and use turgor pressure as a driving force for expansion. This type of polar growth requires a high degree of coordination between a plethora of cellular and extracellular components and compounds, including calcium dynamics, apoplastic reactive oxygen species and pH, the cytoskeleton, and vesicular trafficking.

View Article and Find Full Text PDF

Background: Legumes have the unique capability to undergo root nodule and arbuscular mycorrhizal symbiosis. Both types of root endosymbiosis are regulated by NSP2, which is a target of microRNA171h (miR171h). Although, recent data implies that miR171h specifically restricts arbuscular mycorrhizal symbiosis in the root elongation zone of Medicago truncatula roots, there is limited knowledge available about the spatio-temporal regulation of miR171h expression at different physiological and symbiotic conditions.

View Article and Find Full Text PDF