Publications by authors named "Amelie Kierkegaard"

Cationic surfactants have a strong affinity to sorb to phospholipid membranes and thus possess an inherent potential to bioaccumulate, but there are few measurements of bioconcentration in fish. We measured the bioconcentration of 10 alkylamines plus two quaternary ammonium compounds in juvenile rainbow trout at pH 7.6, and repeated the measurements at pH 6.

View Article and Find Full Text PDF

Active sampling methodology for atmospheric monitoring of cyclic volatile methylsiloxanes (cVMS) was improved to reduce sampling artifacts. A new sorbent, ABN Express (ABN), was evaluated for storage stability and measurement accuracy. Storage stability of cVMS on ABN showed less than 1% degradation of the individual C-labelled octamethylcyclotetrasiloxane (C-D4), decamethylcyclopentasiloxane (C-D5) and dodecamethylcyclohexasiloxane (C-D6) after 14 days storage at room temperature and at -20 °C whereas significant degradation was observed on ENV+ sorbent at room temperature (37-62 %) and -20 °C (9-16 %).

View Article and Find Full Text PDF

Bioaccumulation assessment is important for cationic surfactants in light of their use in a wide variety of consumer products and industrial processes. Because they sorb strongly to natural surfaces and to cell membranes, their bioaccumulation behavior is expected to differ from other classes of chemicals. Divided over two mixtures, we exposed rainbow trout to water containing 10 alkyl amines and 2 quaternary alkylammonium surfactants for 7 days, analyzed different fish tissues for surfactant residues, and calculated the tissues' contribution to fish body burden.

View Article and Find Full Text PDF

The sorption of cyclic volatile methyl siloxanes (cVMS) to organic matter has a strong influence on their fate in the aquatic environment. We report new measurements of the partition ratios between freshwater sediment organic carbon and water (KOC) and between Aldrich humic acid dissolved organic carbon and water (KDOC) for three cVMS, and for three polychlorinated biphenyls (PCBs) that were used as reference chemicals. Our measurements were made using a purge-and-trap method that employs benchmark chemicals to calibrate mass transfer at the air/water interface in a fugacity-based multimedia model.

View Article and Find Full Text PDF

Chemical benchmarking was used to investigate the temporal variation of the persistence of chemical contaminants in a Swedish lake. The chemicals studied included 12 pharmaceuticals, an artificial sweetener, and an X-ray contrast agent. Measurements were conducted in late spring, late autumn, and winter.

View Article and Find Full Text PDF

Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D), decamethylcyclopentasiloxane (D), and dodecamethylcyclohexasiloxane (D) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis.

View Article and Find Full Text PDF

It is challenging to measure the persistence of chemicals under field conditions. In this work, two approaches for measuring persistence in the field were compared: the chemical mass balance approach, and a novel chemical benchmarking approach. Ten pharmaceuticals, an X-ray contrast agent, and an artificial sweetener were studied in a Swedish lake.

View Article and Find Full Text PDF

Of the tens of thousands of chemicals in use, only a small fraction have been analyzed in environmental samples. To effectively identify environmental contaminants, methods to prioritize chemicals for analytical method development are required. We used a high-throughput model of chemical emissions, fate, and bioaccumulation to identify chemicals likely to have high concentrations in specific environmental media, and we prioritized these for target analysis.

View Article and Find Full Text PDF

Cyclic volatile methyl siloxanes (cVMS) concentrations were analyzed in the pelagic food web of two Norwegian lakes (Mjøsa, Randsfjorden), and in brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) collected in a reference lake (Femunden), in 2012. Lakes receiving discharge from wastewater treatment plants (Mjøsa and Randsfjorden) had cVMS concentrations in trout that were up to 2 orders of magnitude higher than those in Femunden, where most samples were close to the limit of quantification (LOQ). Food web biomagnification of cVMS in Mjøsa and Randsfjorden was quantified by estimation of trophic magnification factors (TMFs).

View Article and Find Full Text PDF

Tens of thousands of tonnes of cyclic volatile methylsiloxanes (cVMS) are used each year globally, which leads to high and continuous cVMS emissions to air. However, field measurements of cVMS in air and empirical information about emission rates to air are still limited. Here we present measurements of decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) in air for Zurich, Switzerland.

View Article and Find Full Text PDF

Decamethylcyclopentasiloxane (D5), a high production volume chemical used in personal care products, enters the environment both via air and sewage treatment plant (STP) recipients. It has been found in fish, and there is concern that it may be a bioaccumulative substance. In this work D5 was analyzed in perch from six Swedish lakes that did not receive STP effluent, and in perch and sediment from six lakes that received STP effluent.

View Article and Find Full Text PDF

Cyclic volatile methyl siloxanes (cVMS) are present in technical applications and personal care products. They are predicted to undergo long-range atmospheric transport, but measurements of cVMS in remote areas remain scarce. An active air sampling method for decamethylcyclopentasiloxane (D5) was further evaluated to include hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), and dodecamethylcyclohexasiloxane (D6).

View Article and Find Full Text PDF

Laboratory studies suggest that the cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) will persist in the aquatic environment and bioaccumulate in fish. Here these cVMS were measured in herring collected in the Swedish waters of the Baltic Sea and the North Sea and in grey seals from the Baltic Proper. D4, D5, and D6 were present in herring muscle at concentrations around 10, 200, and 40ngg(-1) lipid weight, respectively.

View Article and Find Full Text PDF

In 1974, Junge postulated a relationship between variability of concentrations of gases in air at remote locations and their atmospheric residence time, and this Junge relationship has subsequently been observed empirically for a range of trace gases. Here, we analyze two previously-published datasets of concentrations of cyclic volatile methyl siloxanes (cVMS) in air and find Junge relationships in both. The first dataset is a time series of concentrations of decamethylcyclopentasiloxane (D5) measured between January and June, 2009 at a rural site in southern Sweden that shows a Junge relationship in the temporal variability of the measurements.

View Article and Find Full Text PDF

The biomagnification of the cyclic volatile methyl siloxanes octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexatetrasiloxane (D6) was analyzed in the Lake Mjøsa food web in Norway from zooplankton and Mysis to planktivorous and piscivorous fish. The trophic magnification factor (TMF) for D5 was determined and compared with TMFs of several legacy contaminants: polychlorinated biphenyl (PCB) congeners 153 and 180, polybrominated diphenyl ether (PBDE) congeners 47 and 99, and p,p'-DDE. D5 showed TMF significantly greater than 1, implying food web biomagnification (TMF = 2.

View Article and Find Full Text PDF

Cyclic volatile methyl siloxanes (cVMS) are high volume production chemicals used in a wide range of industrial and consumer products. Three cVMS compounds (D4, D5, and D6) have and are undergoing environmental risk evaluations in several countries and have been proposed for legal regulation in Canada. As interest in monitoring concentrations of these chemicals in the environment increase, there is a need to evaluate the analytical procedures for cVMS in biological matrices in order to assess the quality of data produced.

View Article and Find Full Text PDF

Cyclic volatile methylsiloxanes are being subjected to regulatory scrutiny as possible PBT chemicals. The investigation of bioaccumulation has yielded apparently contradictory results, with high laboratory fish bioconcentration factors on the one hand and low field trophic magnification factors on the other. In this study, octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were studied along with polychlorinated biphenyls (PCBs) in sediments, ragworm, and flounder from six sites in the Humber Estuary.

View Article and Find Full Text PDF
Article Synopsis
  • The cyclic volatile methylsiloxanes (cVMS), specifically D4, D5, and D6, are new environmental pollutants requiring effective analysis methods.
  • A new purge and trap method was developed for cleaner sample extraction without contamination, involving heating samples to extract cVMS which are then analyzed using GC/MS.
  • The method showed reliable recovery rates and low contamination levels when applied to various environmental samples, indicating that fish contamination in Swedish lakes is predominantly from local sources rather than long-range atmospheric transport.
View Article and Find Full Text PDF

Decamethylcyclopentasiloxane (D(5)) is a volatile compound used in personal care products that is released to the atmosphere in large quantities. Although D(5) is currently under consideration for regulation, there have been no field investigations of its atmospheric fate. We employed a recently developed, quality assured method to measure D(5) concentration in ambient air at a rural site in Sweden.

View Article and Find Full Text PDF

Decamethylcyclopentasiloxane (D(5)), a high production volume chemical used in personal care products, has been designated for regulation in Canada and is under review in the EU because of concerns about its persistence and potential for bioaccumulation in the environment. D(5) is a volatile compound expected to be found primarily in air, but there is little information on atmospheric concentrations due to the lack of sensitive analytical methods. Here a simple and sensitive method to determine D(5) in ambient air is presented.

View Article and Find Full Text PDF

Decabromodiphenyl ethane (DBDPE) is a brominated flame retardant (BFR) used as a replacement for the structurally similar decabromodiphenyl ether (decaBDE), which is a regulated environmental contaminant of concern. DBDPE has been found in indoor dust, sewage sludge, sediment, and biota, but little is known about its occurrence and distribution in the environment In this paper, sediment was analyzed from 11 isolated Swedish lakes and along a transect running from central Stockholm through the Stockholm archipelago to the Baltic Sea. DBDPE was present in all samples.

View Article and Find Full Text PDF

Beef and dairy products can be important vectors of human exposure to polybrominated diphenylethers (BDEs), and hence an understanding of BDE transfer from feed to cows' milk and tissue is important for BDE exposure assessment The fate of tri- to hexaBDEs in lactating cows exposed to a naturally contaminated diet was studied by analyzing feed, feces, and milk samples from a mass balance study. Tissue distribution was studied in one cowslaughtered afterthe experiment The carryover rates from feed to milk ranged from 0.15 to 0.

View Article and Find Full Text PDF

The additive flame retardant decabromodiphenyl ethane (deBDethane) has been identified in the environment, but little is known about its environmental behaviour. It is structurally similar to decabromodiphenyl ether (decaBDE), making it conceivable that it may also become an environmental contaminant of concern. In this study a mass balance of deBDethane and decaBDE was undertaken in a modern WWTP in Stockholm serving 7.

View Article and Find Full Text PDF

Decabromodiphenyl ethane (deBDethane) is an additive flame retardant marketed as a replacement for decabromodiphenyl ether (decaBDE). The structures of the two chemicals are similar, and hence deBDethane may also become an environmental contaminant of concern. Environmental data on deBDethane are scarce.

View Article and Find Full Text PDF

Methods for environmental analysis of higher brominated diphenyl ethers (PBDEs), in particular decabromodiphenyl ether (BDE209), and the recently discovered environmental contaminant decabromodiphenyl ethane (deBDethane) are reviewed. The extensive literature on analysis of BDE209 has identified several critical issues, including contamination of the sample, degradation of the analyte during sample preparation and GC analysis, and the selection of appropriate detection methods and surrogate standards. The limited experience with the analysis of deBDethane suggests that there are many commonalities with BDE209.

View Article and Find Full Text PDF