Understanding the mechanisms of synaptic plasticity is crucial for elucidating how the brain adapts to internal and external stimuli. A key objective of plasticity is maintaining physiological activity states during perturbations by adjusting synaptic transmission through negative feedback mechanisms. However, identifying and characterizing novel molecular targets orchestrating synaptic plasticity remains a significant challenge.
View Article and Find Full Text PDFThe interplay between neuronal structure and function underpins the dynamic nature of neocortical networks. Despite extensive studies in animal models, our understanding of structure-function interrelations in the adult human brain remains incomplete. Recent methodological advances have facilitated the functional analysis of individual neurons within the human neocortex, providing a new understanding of fundamental brain processes.
View Article and Find Full Text PDFThe perforant path provides the primary cortical excitatory input to the hippocampus. Because of its important role in information processing and coding, entorhinal projections to the dentate gyrus have been studied in considerable detail. Nevertheless, synaptic transmission between individual connected pairs of entorhinal stellate cells and dentate granule cells remains to be characterized.
View Article and Find Full Text PDFStructural, functional, and molecular reorganization of denervated neural networks is often observed in neurological conditions. The loss of input is accompanied by homeostatic synaptic adaptations, which can affect the reorganization process. A major challenge of denervation-induced homeostatic plasticity operating in complex neural networks is the specialization of neuronal inputs.
View Article and Find Full Text PDFMicroglia, the resident immune cells of the CNS, sense the activity of neurons and regulate physiological brain functions. They have been implicated in the pathology of brain diseases associated with alterations in neural excitability and plasticity. However, experimental and therapeutic approaches that modulate microglia function in a brain region-specific manner have not been established.
View Article and Find Full Text PDFPreviously we showed that the vitamin A metabolite all-trans retinoic acid (atRA) induces synaptic plasticity in acute brain slices prepared from the mouse and human neocortex (Lenz et al., 2021). Depending on the brain region studied, distinct effects of atRA on excitatory and inhibitory neurotransmission have been reported.
View Article and Find Full Text PDFA defining feature of the brain is the ability of its synaptic contacts to adapt structurally and functionally in an experience-dependent manner. In the human cortex, however, direct experimental evidence for coordinated structural and functional synaptic adaptation is currently lacking. Here, we probed synaptic plasticity in human cortical slices using the vitamin A derivative all-trans retinoic acid (atRA), a putative treatment for neuropsychiatric disorders such as Alzheimer's disease.
View Article and Find Full Text PDFInflammation of the central nervous system can be triggered by endogenous and exogenous stimuli such as local or systemic infection, trauma, and stroke. In addition to neurodegeneration and cell death, alterations in physiological brain functions are often associated with neuroinflammation. Robust experimental evidence has demonstrated that inflammatory cytokines affect the ability of neurons to express plasticity.
View Article and Find Full Text PDFSystemic inflammation is associated with alterations in complex brain functions such as learning and memory. However, diagnostic approaches to functionally assess and quantify inflammation-associated alterations in synaptic plasticity are not well-established. In previous work, we demonstrated that bacterial lipopolysaccharide (LPS)-induced systemic inflammation alters the ability of hippocampal neurons to express synaptic plasticity, i.
View Article and Find Full Text PDF