Hox proteins are well-established developmental regulators that coordinate cell fate and morphogenesis throughout embryogenesis. In contrast, our knowledge of their specific molecular modes of action is limited to the interaction with few cofactors. Here, we show that Hox proteins are able to interact with a wide range of transcription factors in the live Drosophila embryo.
View Article and Find Full Text PDFDespite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior-posterior axis. Hox proteins exert their function by interaction with TALE transcription factors.
View Article and Find Full Text PDFBackground: Hox proteins are key developmental regulators involved in almost every embryonic tissue for specifying cell fates along longitudinal axes or during organ formation. It is thought that the panoply of Hox activities relies on interactions with tissue-, stage-, and/or cell-specific transcription factors. High-throughput approaches in yeast or cell culture systems have shown that Hox proteins bind to various types of nuclear and cytoplasmic components, illustrating their remarkable potential to influence many different cell regulatory processes.
View Article and Find Full Text PDF