Publications by authors named "Amelia Stanco"

The postnatal functions of the Dlx1&2 transcription factors in cortical interneurons (CINs) are unknown. Here, using conditional Dlx1, Dlx2, and Dlx1&2 knockouts (CKOs), we defined their roles in specific CINs. The CKOs had dendritic, synaptic, and survival defects, affecting even PV+ CINs.

View Article and Find Full Text PDF

The neocortex of primates, including humans, contains more abundant and diverse inhibitory neurons compared with rodents, but the molecular foundations of these observations are unknown. Through integrative gene coexpression analysis, we determined a consensus transcriptional profile of GABAergic neurons in mid-gestation human neocortex. By comparing this profile to genes expressed in GABAergic neurons purified from neonatal mouse neocortex, we identified conserved and distinct aspects of gene expression in these cells between the species.

View Article and Find Full Text PDF

Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. The two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial versus tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons.

View Article and Find Full Text PDF

Little is known about genetic mechanisms that regulate the ratio of cortical excitatory and inhibitory neurons. We show that NPAS1 and NPAS3 transcription factors (TFs) are expressed in progenitor domains of the mouse basal ganglia (subpallium, MGE, and CGE). NPAS1(-/-) mutants had increased proliferation, ERK signaling, and expression of Arx in the MGE and CGE.

View Article and Find Full Text PDF

Here we have provided evidence that nitric oxide-cyclic GMP (NO-cGMP) signaling regulates neurite length and migration of immature neurons derived from the medial ganglionic eminence (MGE). Dlx1/2(-/-) and Lhx6(-/-) mouse mutants, which exhibit MGE interneuron migration defects, have reduced expression of the gene encoding the α subunit of a soluble guanylate cyclase (Gucy1A3). Furthermore, Dlx1/2(-/-) mouse mutants have reduced expression of NO synthase 1 (NOS1).

View Article and Find Full Text PDF

Synaptogenesis has been extensively studied along with dendritic spine development in glutamatergic pyramidal neurons, however synapse development in cortical interneurons, which are largely aspiny, is comparatively less well understood. Dact1, one of 3 paralogous Dact (Dapper/Frodo) family members in mammals, is a scaffold protein implicated in both the Wnt/β-catenin and the Wnt/Planar Cell Polarity pathways. We show here that Dact1 is expressed in immature cortical interneurons.

View Article and Find Full Text PDF

Inhibitory interneurons regulate the responses of cortical circuits. In auditory cortical areas, inhibition from these neurons narrows spectral tuning and shapes response dynamics. Acute disruptions of inhibition expand spectral receptive fields.

View Article and Find Full Text PDF

Microtubule cytoskeletal dynamics of cortical progenitors and astroglial cells have critical roles in the emergence of normal functional organization of cerebral cortex and in disease processes such as tumorigenesis. However, tools to efficiently visualize these events are lacking. Here we describe a mouse genetic model to efficiently visualize and analyse radial progenitors, their astroglial progeny, and the microtubule cytoskeleton of these cells in the developing and adult brain.

View Article and Find Full Text PDF

Dlx transcription factors are important in the differentiation of GABAergic interneurons. In mice lacking Dlx1, early steps in interneuron development appear normal. Beginning at ∼ 1 mo of age, primarily dendrite-innervating interneuron subtypes begin to undergo apoptosis in Dlx1(-/-) mice; this is accompanied by a reduction in GABAergic transmission and late-onset epilepsy.

View Article and Find Full Text PDF

CXCL12/CXCR4 signaling is critical for cortical interneuron migration and their final laminar distribution. No information is yet available on CXCR7, a newly defined CXCL12 receptor. Here we demonstrated that CXCR7 regulated interneuron migration autonomously, as well as nonautonomously through its expression in immature projection neurons.

View Article and Find Full Text PDF

Polarized radial glia are crucial to the formation of the cerebral cortex. They serve as neural progenitors and as guides for neuronal placement in the developing cerebral cortex. The maintenance of polarized morphology is essential for radial glial functions, but the extent to which the polarized radial glial scaffold is static or dynamic during corticogenesis remains an open question.

View Article and Find Full Text PDF

Neuregulin-1 (NRG1) and Disrupted-in-Schizophrenia-1 (DISC1) are promising susceptibility factors for schizophrenia. Both are multifunctional proteins with roles in a variety of neurodevelopmental processes, including progenitor cell proliferation, migration, and differentiation. Here, we provide evidence linking these factors together in a single pathway, which is mediated by ErbB receptors and PI3K/Akt.

View Article and Find Full Text PDF

The radial glial cells serve as neural progenitors and as a migratory guide for newborn neurons in the developing cerebral cortex. These functions require appropriate organization and proliferation of the polarized radial glial scaffold. Here, we demonstrate in mice that the myristoylated alanine-rich C-kinase substrate protein (MARCKS), a prominent cellular substrate for PKC, modulates radial glial placement and expansion.

View Article and Find Full Text PDF

Cortical GABAergic interneurons, most of which originate in the ganglionic eminences, take distinct tangential migratory trajectories into the developing cerebral cortex. However, the ligand-receptor systems that modulate the tangential migration of distinct groups of interneurons into the emerging cerebral wall remain unclear. Here, we show that netrin-1, a diffusible guidance cue expressed along the migratory routes traversed by GABAergic interneurons, interacts with alpha3beta1 integrin to promote interneuronal migration.

View Article and Find Full Text PDF

Radial glia are highly polarized cells that serve as neuronal progenitors and as scaffolds for neuronal migration during construction of the cerebral cortex. How radial glial cells establish and maintain their morphological polarity is unknown. Using conditional gene targeting in mice, we demonstrate that adenomatous polyposis coli (APC) serves an essential function in the maintenance of polarized radial glial scaffold during brain development.

View Article and Find Full Text PDF

Extracellular matrix associated Sparc-like 1 (SC1/SPARCL1) can influence the function of astroglial cells in the developing and mature central nervous system (CNS). To examine SC1's significance in the CNS, we generated a BAC transgenic mouse model in which Sc1 is expressed in radial glia and their astrocyte derivatives using the astroglial-specific Blbp (Brain-lipid binding protein; [Feng et al., (1994) Neuron 12:895-908]) regulatory elements.

View Article and Find Full Text PDF

We show that alpha3 integrin mutation disrupts distinct aspects of neuronal migration and placement in the cerebral cortex. The preplate develops normally in alpha3 integrin mutant mice. However, time lapse imaging of migrating neurons in embryonic cortical slices indicates retarded radial and tangential migration of neurons, but not ventricular zone-directed migration.

View Article and Find Full Text PDF