Publications by authors named "Amelia Seifalian"

Article Synopsis
  • Graphene is highlighted as a revolutionary material that could significantly improve various industries, particularly through a graphene-based nanomaterial called Hastalex, designed for surgical implants to treat pelvic organ prolapse (POP).
  • The study focuses on Hastalex's mechanical and physicochemical properties, comparing them to polypropylene implants, which have been associated with complications and have been banned in some countries.
  • Findings reveal that Hastalex has exceptional mechanical strength and hydrophilic qualities, making it a promising candidate for developing new implants that can potentially enhance patient outcomes in the treatment of POP.
View Article and Find Full Text PDF

Introduction And Hypothesis: Polypropylene (PP) mesh for the treatment of pelvic organ prolapse (POP) has raised substantial concerns over long-term complications, leading to its ban in multiple countries. In response, emerging materials are being explored as alternatives for prolapse surgery. Preclinical animal models have historically played a pivotal role in validating medical devices, prior to clinical trials.

View Article and Find Full Text PDF

We conducted a double-blind, randomized, placebo-controlled, single-center study involving 30 women undergoing breast augmentation surgery with silicone breast implants. All patients had an A cup breast size and a similar body mass index. We placed the same type of implant in a subpectoral dual plane in each patient.

View Article and Find Full Text PDF

Background: Polypropylene (PP) pelvic mesh is a synthetic mesh made of PP polymer used to treat pelvic organ prolapse (POP). Its use has become highly controversial due to reports of serious complications. This research critically reviews the current management options for POP and PP mesh as a viable clinical application for the treatment of POP.

View Article and Find Full Text PDF

Bacterial infection of the wound could potentially cause serious complications and an enormous medical and financial cost to the rapid emergence of drug-resistant bacteria. Nanomaterials are an emerging technology, that has been researched as possible antimicrobial nanomaterials for the inhibition of wound infection and enhancement of wound healing. Graphene is 2-dimensional (2D) sheet of sp carbon atoms in a honeycomb structure.

View Article and Find Full Text PDF

Dysmenorrhoea effects up to 90% of women of reproductive age, with medical management options including over-the-counter analgesia or hormonal contraception. There has been a recent surge in medicinal cannabis research and its analgesic properties. This paper aims to critically investigate the current research of medicinal cannabis for pain relief and to discuss its potential application to treat dysmenorrhoea.

View Article and Find Full Text PDF

A wound can be surgical cuts from an operation or due to accident and trauma. The infected wound, as a result of bacteria growth within the damaged skin, interrupts the natural wound healing process and significantly impacts the quality of life. Wound dressing is an important segment of the skincare industry with its economic burden estimated at $ 20.

View Article and Find Full Text PDF

Background: Turner syndrome (TS), also known as 45,X, is a genetic disorder caused by the partial or complete lack of an X chromosome. TS can cause a variety of medical and developmental conditions. We aimed to investigate TS mosaicism and variants pattern and research the presence of a correlation between the different variant's factors and TS occurrence.

View Article and Find Full Text PDF

Peripheral nerve injury is a common medical condition that has a great impact on patient quality of life. Currently, surgical management is considered to be a gold standard first-line treatment; however, is often not successful and requires further surgical procedures. Commercially available FDA- and CE-approved decellularized nerve conduits offer considerable benefits to patients suffering from a completely transected nerve but they fail to support neural regeneration in gaps > 30 mm.

View Article and Find Full Text PDF

The occurrence of anosmia, the loss or change in sense of smell, is one of the most common symptoms of COVID-19 experienced by almost 53% of those affected. Several hypotheses explain the mechanism of anosmia in patients suffering from COVID-19. This study aims to review the related mechanisms and answer the questions regarding COVID-19-related anosmia as well as propose a new strategy for treatment of long-term anosmia as a result of COVID-19 infection.

View Article and Find Full Text PDF

Regenerative medicine seeks to assess how materials fundamentally affect cellular functions to improve retaining, restoring, and revitalizing damaged tissues and cancer therapy. As potential candidates in regenerative medicine, hydrogels have attracted much attention due to mimicking of native cell-extracellular matrix (ECM) in cell biology, tissue engineering, and drug screening over the past two decades. In addition, hydrogels with a high capacity for drug loading and sustained release profile are applicable in drug delivery systems.

View Article and Find Full Text PDF

Desirable carbon allotropes such as graphene oxide (GO) have entered the field with several biomedical applications, owing to their exceptional physicochemical and biological features, including extreme strength, found to be 200 times stronger than steel; remarkable light weight; large surface-to-volume ratio; chemical stability; unparalleled thermal and electrical conductivity; and enhanced cell adhesion, proliferation, and differentiation properties. The presence of functional groups on graphene oxide (GO) enhances further interactions with other molecules. Therefore, recent studies have focused on GO-based materials (GOBMs) rather than graphene.

View Article and Find Full Text PDF

The potential use of growth factors in stem cell-based therapies for the repair and regeneration of tissues and organs offers a paradigm shift in regenerative medicine. Growth factors are critical signalling molecules that play an important role in tissue development and remodelling. Plasma rich in growth factor (PRGF) is a biotechnological strategy for the harvesting of the active substances of platelets, including growth factors, from the patient's blood.

View Article and Find Full Text PDF

Polymeric heart valves seem to be an attractive alternative to mechanical and biological prostheses as they are more durable, due to the superior properties of novel polymers, and have the biocompatibility and hemodynamics comparable to tissue substitutes. This study reports a comprehensive assessment of a nanocomposite based on the functionalised graphene oxide and poly(carbonate-urea)urethane with the trade name "Hastalex" in comparison with GORE-TEX, a commercial polymer routinely used for cardiovascular medical devices. Experimental data have proved that GORE-TEX has a 2.

View Article and Find Full Text PDF

The Nobel Prize for Medicine in 2017 was awarded to Michael Young, Michael Rosbash and Jeffrey Hall for their discoveries into the molecular mechanisms controlling circadian rhythms (CR). The aims of this paper were to present the mechanisms behind the CRs and discuss the impact this could have on human health. We argued that further research in this field has the potential to revolutionise healthcare through understanding the influence on the pathogenesis of disease, including in cardiovascular, mental and neurological health, as well as influence on cognitive function.

View Article and Find Full Text PDF

Research pertaining to conductive polymers has gained significant traction in recent years, and their applications range from optoelectronics to material science. For all intents and purposes, conductive polymers can be described as Nobel Prize-winning materials, given that their discoverers were awarded the Nobel Prize in Chemistry in 2000. In this review, we seek to describe the chemical forms and functionalities of the main types of conductive polymers, as well as their synthesis methods.

View Article and Find Full Text PDF

Spinal cord injury is a chronic and debilitating neurological condition that is currently being managed symptomatically with no real therapeutic strategies available. Even though there is no consensus on the best time to start interventions, the chronic phase is definitely the most stable target in order to determine whether a therapy can effectively restore neurological function. The advancements of nanoscience and stem cell technology, combined with the powerful, novel neuroimaging modalities that have arisen can now accelerate the path of promising novel therapeutic strategies from bench to bedside.

View Article and Find Full Text PDF

3D models are emerging as valuable tools for personalised nanoparticle-based cancer treatments. 3D models represent in vivo cancers more realistically than 2D patterns that are grown in Petri dishes. However, creating a 3D cancer model that mimics the complexity and heterogeneity of cancers in vivo remains difficult.

View Article and Find Full Text PDF

The aim of this study is to develop a simple and cost-effective method for decellularization and preservation of human amniotic membrane (HAM) as a soft tissue replacement and a delivery system for stem cells. The HAM is decellularized (D) using new chemical and mechanical techniques. The decellularization scaffold is evaluated histologically and fully characterized.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI) and are capable of conjugation with various cell types, including stem cells.

View Article and Find Full Text PDF