Publications by authors named "Amelia Sedjahtera"

Background: Alterations in the methionine cycle and abnormal tau phosphorylation are implicated in many neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. rTg4510 mice express mutant human P301L tau and are a model of tau hyperphosphorylation. The cognitive deficit seen in these animals correlates with a burden of hyperphosphorylated tau and is a model to test therapies aimed at lowering phosphorylated tau.

View Article and Find Full Text PDF

Tauopathies are characterized by the pathological accumulation of the microtubule associated protein tau within the brain. We demonstrate here that a copper/zinc chaperone (PBT2, Prana Biotechnology) has rapid and profound effects in the rTg(tauP301L)4510 mouse model of tauopathy. This was evidenced by significantly improved cognition, a preservation of neurons, a decrease in tau aggregates and a decrease in other forms of "pathological" tau (including phosphorylated tau and sarkosyl-insoluble tau).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the leading cause of dementia worldwide accounting for around 70% of all cases. There is currently no treatment for AD beyond symptom management and attempts at developing disease-modifying therapies have yielded very little. These strategies have traditionally targeted the peptide Aβ, which is thought to drive pathology.

View Article and Find Full Text PDF

Elevated iron in the SNpc may play a key role in Parkinson's disease (PD) neurodegeneration since drug candidates with high iron affinity rescue PD animal models, and one candidate, deferirpone, has shown efficacy recently in a phase two clinical trial. However, strong iron chelators may perturb essential iron metabolism, and it is not yet known whether the damage associated with iron is mediated by a tightly bound (eg ferritin) or lower-affinity, labile, iron pool. Here we report the preclinical characterization of PBT434, a novel quinazolinone compound bearing a moderate affinity metal-binding motif, which is in development for Parkinsonian conditions.

View Article and Find Full Text PDF

The abnormal accumulation of alpha-synuclein (α-syn) has been linked to a number of neurodegenerative disorders, the most noteworthy of which is Parkinson's disease. Alpha-synuclein itself is not toxic and fulfills various physiological roles in the central nervous system. However, specific types of aggregates have been shown to be toxic, and metals have been linked to the assembly of these toxic aggregates.

View Article and Find Full Text PDF

The loss of cognitive function is a pervasive and often debilitating feature of the aging process for which there are no effective therapeutics. We hypothesized that a novel metal chaperone (PBT2; Prana Biotechnology, Parkville, Victoria, Australia) would enhance cognition in aged rodents. We show here that PBT2 rapidly improves the performance of aged C57Bl/6 mice in the Morris water maze, concomitant with increases in dendritic spine density, hippocampal neuron number and markers of neurogenesis.

View Article and Find Full Text PDF

Ceruloplasmin is an iron-export ferroxidase that is abundant in plasma and also expressed in glia. We found a ∼80% loss of ceruloplasmin ferroxidase activity in the substantia nigra of idiopathic Parkinson disease (PD) cases, which could contribute to the pro-oxidant iron accumulation that characterizes the pathology. Consistent with a role for ceruloplasmin in PD etiopathogenesis, ceruloplasmin knockout mice developed parkinsonism that was rescued by iron chelation.

View Article and Find Full Text PDF

Although CSs (corticosteroids) demonstrate potent effects in the control of airway inflammation in asthma, many patients continue to experience symptoms and AHR (airway hyper-responsiveness) despite optimal treatment with these agents, probably due to progressive airway remodelling. Identifying novel therapies that can target airway remodelling and/or airway reactivity may improve symptom control in these patients. We have demonstrated previously that the anti-fibrotic hormone RLN (relaxin) can reverse airway remodelling (epithelial thickening and subepithelial fibrosis) and AHR in a murine model of AAD (allergic airways disease).

View Article and Find Full Text PDF