Background: Deployment and access to state-of-the-art precision medicine technologies remains a fundamental challenge in providing equitable global cancer care in low-resource settings. The expansion of digital pathology in recent years and its potential interface with diagnostic artificial intelligence algorithms provides an opportunity to democratize access to personalized medicine. Current digital pathology workstations, however, cost thousands to hundreds of thousands of dollars.
View Article and Find Full Text PDFSpatial transcriptomics (ST) has demonstrated enormous potential for generating intricate molecular maps of cells within tissues. Here we present iStar, a method based on hierarchical image feature extraction that integrates ST data and high-resolution histology images to predict spatial gene expression with super-resolution. Our method enhances gene expression resolution to near-single-cell levels in ST and enables gene expression prediction in tissue sections where only histology images are available.
View Article and Find Full Text PDFSingle-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity in health and disease. However, the lack of physical relationships among dissociated cells has limited its applications. To address this issue, we present CeLEry (Cell Location recovEry), a supervised deep learning algorithm that leverages gene expression and spatial location relationships learned from spatial transcriptomics to recover the spatial origins of cells in scRNA-seq.
View Article and Find Full Text PDFSpatially resolved transcriptomics (SRT) has advanced our understanding of the spatial patterns of gene expression, but the lack of single-cell resolution in spatial barcoding-based SRT hinders the inference of specific locations of individual cells. To determine the spatial distribution of cell types in SRT, we present SpaDecon, a semi-supervised learning approach that incorporates gene expression, spatial location, and histology information for cell-type deconvolution. SpaDecon was evaluated through analyses of four real SRT datasets using knowledge of the expected distributions of cell types.
View Article and Find Full Text PDFCITE-seq, a single-cell multi-omics technology that measures RNA and protein expression simultaneously in single cells, has been widely applied in biomedical research, especially in immune related disorders and other diseases such as influenza and COVID-19. Despite the proliferation of CITE-seq, it is still costly to generate such data. Although data integration can increase information content, this raises computational challenges.
View Article and Find Full Text PDFRecent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology.
View Article and Find Full Text PDFComput Struct Biotechnol J
July 2021
Recent developments in spatially resolved transcriptomics (SRT) technologies have enabled scientists to get an integrated understanding of cells in their morphological context. Applications of these technologies in diverse tissues and diseases have transformed our views of transcriptional complexity. Most published studies utilized tools developed for single-cell RNA sequencing (scRNA-seq) for data analysis.
View Article and Find Full Text PDFSpecies interactions are known to be key in driving patterns of biodiversity across the globe. Plant-plant interactions through heterospecific pollen (HP) transfer by their shared pollinators is common and has consequences for plant reproductive success and floral evolution, and thus has the potential to influence global patterns of biodiversity and plant community assembly. The literature on HP transfer is growing and it is therefore timely to review patterns and causes of among-species variation in HP receipt at a global scale, thus uncovering its potential contribution to global patterns of biodiversity.
View Article and Find Full Text PDFAmbient mass spectrometry is an analytical approach that enables ionization of molecules under open-air conditions with no sample preparation and very fast sampling times. Rapid evaporative ionization mass spectrometry (REIMS) is a relatively new type of ambient mass spectrometry that has demonstrated applications in both human health and food science. Here, we present an evaluation of REIMS as a tool to generate molecular scale information as an objective measure for the assessment of beef quality attributes.
View Article and Find Full Text PDF