Publications by authors named "Amelia Liu"

Topological defects are singularities within a field that cannot be removed by continuous transformations. The definition of these irregularities requires an ordered reference configuration, calling into question whether they exist in disordered materials, such as glasses. However, recent work suggests that well-defined topological defects emerge in the dynamics of glasses, even if they are not evident in the static configuration.

View Article and Find Full Text PDF

Sheet-like colloidal assemblies represent model systems to investigate the structure and properties of two-dimensional materials. Here, we report a simple yet versatile method for the preparation of colloidal monolayer sheet-like assemblies that affords control over the size, crystalline order, flexibility, and defect density. The protocol that we report relies on self-assembly of colloids as a sessile drop of dispersion is evaporated on an oil-covered substrate.

View Article and Find Full Text PDF

The deformation mechanism in amorphous solids subjected to external shear remains poorly understood because of the absence of well-defined topological defects mediating the plastic deformation. The notion of soft spots has emerged as a useful tool to characterize the onset of irreversible rearrangements and plastic flow, but these entities are not clearly defined in terms of geometry and topology. In this study, we unveil the phenomenology of recently discovered, precisely defined topological defects governing the microscopic mechanical and yielding behavior of a model 3D glass under shear deformation.

View Article and Find Full Text PDF

The efficiency of an organic solar cell is highly dependent on the complex, interpenetrating morphology, and molecular order within the composite phases of the bulk heterojunction (BHJ) blend. Both these microstructural aspects are strongly influenced by the processing conditions and chemical design of donor/acceptor materials. To establish improved structure-function relationships, it is vital to visualize the local microstructural order to provide specific local information about donor/acceptor interfaces and crystalline texture in BHJ blend films.

View Article and Find Full Text PDF

The waveguide modes in chemically-grown silver nanowires on silicon nitride substrates are observed using spectrally- and spatially-resolved cathodoluminescence (CL) excited by high-energy electrons in a scanning electron microscope. The presence of a long-range, travelling surface plasmon mode modulates the coupling efficiency of the incident electron energy into the nanowires, which is observed as oscillations in the measured CL with the point of excitation by the focused electron beam. The experimental data are modeled using the theory of surface plasmon polariton modes in cylindrical metal waveguides, enabling the complex mode wavenumbers and excitation strength of the long-range surface plasmon mode to be extracted.

View Article and Find Full Text PDF

This study describes the capabilities and limitations of carrying out total scattering experiments on the Powder Diffraction (PD) beamline at the Australian Synchrotron, ANSTO. A maximum instrument momentum transfer of 19 Å can be achieved if the data are collected at 21 keV. The results detail how the pair distribution function (PDF) is affected by Q, absorption and counting time duration at the PD beamline, and refined structural parameters exemplify how the PDF is affected by these parameters.

View Article and Find Full Text PDF

Quasiperiodicity is a form of spatial order that has been observed in quasicrystalline matter but not light. We construct a quasicrystalline surface out of a light emitting diode. Using a nanoscale waveguide as a microscope (NSOM), we directly image the light field at the surface of the diode.

View Article and Find Full Text PDF

The mechanical properties of crystals are controlled by the translational symmetry of their structures. But for glasses with a disordered structure, the link between the symmetry of local particle arrangements and stability is not well established. In this contribution, we provide experimental verification that the centrosymmetry of nearest-neighbor polyhedra in a glass strongly correlates with the local mechanical stability.

View Article and Find Full Text PDF

We developed a series of highly crystalline double-cable conjugated polymers for application in single-component organic solar cells (SCOSCs). These polymers contain conjugated backbones as electron donor and pendant perylene bisimide units (PBIs) as electron acceptor. PBIs are connected to the backbone via alkyl units varying from hexyl (C H ) to eicosyl (C H ) as flexible linkers.

View Article and Find Full Text PDF

The evolution of polygonal-shaped nanoholes on the (100) surface of germanium, aided by focused ion beam induced self-organization, is presented. The energetic beam of ions creates a viscous phase which, at a thermodynamical minimum, leads to surface self-organization. A directed viscous-flow along the predefined nanoholes provides well-ordered polygonal nanostructures, ranging from triangles to hexagons and octagons, as desired.

View Article and Find Full Text PDF

Nanoparticle dimers composed of different metals or metal oxides, as well as different shapes and sizes, are of wide interest for applications ranging from nanoplasmonic sensing to nanooptics to biomedical engineering. Shaped nanoparticles, like triangles and nanorods, can be particularly useful in applications due to the strong localized plasmonic hot-spot that forms at the tips or corners. By placing catalytic, but traditionally weakly- or non-plasmonic nanoparticles, such as metal oxides and metals like palladium, in these hot-spots, an enhanced function for sensing, photocatalysis or optical use is predicted.

View Article and Find Full Text PDF
Article Synopsis
  • The understanding of how disordered porous carbons change during activation is limited due to a lack of high-resolution methods to study their complex structures.
  • Utilizing high-energy electron nanodiffraction, researchers measured the 3D pair-angle distribution and identified structural changes, including bond angles and defects, in disordered carbon during activation.
  • Findings show an increase in short-range order and fivefold ring defects, supporting the idea of curved graphene networks and explaining the significant free volume creation with minimal changes in bonding ratios.
View Article and Find Full Text PDF

The excitability of local surface plasmon modes in radial trimers composed of gold nanorods was mapped using hyperspectral cathodoluminescence (CL) in the scanning electron microscope. In symmetric trimers, the local plasmon resonances could be excited most effectively at the ends of individual rods. Introducing asymmetry into the structure breaks the degeneracy of the dipole modes and changes the excitability of transverse dipole modes in different directions.

View Article and Find Full Text PDF

Site-specific ion-irradiation is a promising tool fostering strain-engineering of freestanding nanostructures to realize 3D-configurations towards various functionalities. We first develop a novel approach of fabricating freestanding 3D silicon nanostructures by low dose ion-implantation followed by chemical-etching. The fabricated nanostructures can then be deformed bidirectionally by varying the local irradiation of kiloelectronvolt gallium ions.

View Article and Find Full Text PDF

Inherited retinal degeneration (IRD), a group of rare retinal diseases that primarily lead to the progressive loss of retinal photoreceptor cells, can be inherited in all modes of inheritance: autosomal dominant (AD), autosomal recessive (AR), X-linked (XL), and mitochondrial. Based on the pattern of inheritance of the dystrophy, retinal gene therapy has 2 main strategies. AR, XL, and AD IRDs with haploinsufficiency can be treated by inserting a functional copy of the gene using either viral or nonviral vectors (gene augmentation).

View Article and Find Full Text PDF

Here we present the results of an investigation of resonances of azimuthal trimer arrangements of rectangular slots in a gold film on a glass substrate using cathodoluminescence (CL) as a probe. The variation in the CL signal collected from specific locations on the sample as a function of wavelength and the spatial dependence of emission into different wavelength bands provides considerable insight into the resonant modes, particularly sub-radiant modes, of these apertures. By comparing our experimental results with electromagnetic simulations we are able to identify a Fabry-Pérot mode of these cavities as well as resonances associated with the excitation of surface plasmon polaritons on the air-gold boundary.

View Article and Find Full Text PDF

Organic-inorganic hybrid perovskites, such as CH NH PbI have shown highly promising photovoltaic performance. Electron microscopy (EM) is a powerful tool for studying the crystallography, morphology, interfaces, lattice defects, composition, and charge carrier collection and recombination properties at the nanoscale. Here, the sensitivity of CH NH PbI to electron beam irradiation is examined.

View Article and Find Full Text PDF

Here, we systematically study the effect of fluorination on the performance of all-polymer solar cells by employing a naphthalene diimide (NDI)-based polymer acceptor with thiophene-flanked phenyl co-monomer. Fluorination of the phenyl co-monomer with either two or four fluorine units is used to create a series of acceptor polymers with either no fluorination (PNDITPhT), bifluorination (PNDITF2T), or tetrafluorination (PNDITF4T). In blends with the donor polymer PTB7-Th, fluorination results in an increase in power conversion efficiency from 3.

View Article and Find Full Text PDF

Local structure and symmetry are keys to understanding how a material is formed and the properties it subsequently exhibits. This applies to both crystals and amorphous and glassy materials. In the case of amorphous materials, strong links between processing and history, structure and properties have yet to be made because measuring amorphous structure remains a significant challenge.

View Article and Find Full Text PDF

Asymmetric nanoparticle trimers composed of particles with increasing diameter act as "plasmonic lenses" and have been predicted to exhibit ultrahigh confinement of electromagnetic energy in the space between the two smallest particles. Here we present an electrostatic self-assembly approach for creating gold nanoparticle trimers with an assembly yield of over 60%. We demonstrate that the trimer assembly leads to characteristic red-shifts and show the localization of the relevant plasmon modes by means of cathodoluminescence and electron energy loss spectroscopy.

View Article and Find Full Text PDF

The aqueous dispersibility of carbon-based nanomaterials, namely graphene oxide (GO), reduced graphene oxide (rGO) and carbon nanotubes (CNTs), can be controlled by light via the photoisomerisation of a photoswitchable surfactant molecule adsorbed to the surface of these materials. By incorporating a cationic azobenzene photosurfactant into these systems, GO, rGO and CNT dispersions can be separated and redispersed on command utilising UV radiation at 365 nm, whereby the surfactant molecules change from the trans to the cis isomer. This increases their aqueous solubility and in turn, alters their adsorption affinity for the GO and rGO sheets such that the ratio of free to adsorbed surfactant molecules changes significantly, allowing for reversible phase separation of the colloids.

View Article and Find Full Text PDF

The interpretation of angular symmetries in electron nanodiffraction patterns from thin amorphous specimens is examined. It is found that in general there are odd symmetries in experimental electron nanodiffraction patterns. Using simulation, it is demonstrated that this effect can be attributed to dynamical scattering, rather than other divergences from the ideal experimental conditions such as probe-forming lens aberrations and camera noise.

View Article and Find Full Text PDF

Porosity loss, also known as physical aging, in glassy polymers hampers their long term use in gas separations. Unprecedented interactions of porous aromatic frameworks (PAFs) with these polymers offer the potential to control and exploit physical aging for drastically enhanced separation efficiency. PAF-1 is used in the archetypal polymer of intrinsic microporosity (PIM), PIM-1, to achieve three significant outcomes.

View Article and Find Full Text PDF

Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position.

View Article and Find Full Text PDF

High-resolution radial distribution functions of as-implanted and thermally relaxed amorphous silicon created by ion implantation were measured using tilted-illumination selected area electron diffraction at room temperature. The diffracted intensities were measured out to a maximum scattering vector 2 sin(θ)/λ of 3.3-3.

View Article and Find Full Text PDF