Sickle cell disease (SCD) is a prevalent, life-threatening condition with few treatment options, attributed to a heritable mutation in β-hemoglobin. Therapeutic induction of fetal hemoglobin (HbF) with small molecules has been pursued as a treatment to ameliorate many disease complications but with limited success. Herein, we report the discovery of , a novel, potent, and selective molecular glue degrader of the transcription factor WIZ that robustly induces HbF expression as a potential treatment for SCD.
View Article and Find Full Text PDFTuberculosis (TB), caused by the pathogenic bacterium (Mtb), is a global health threat. Targeting host pathways that modulate protective or harmful components of inflammation has been proposed as a therapeutic strategy that could aid sterilization or mitigate TB-associated permanent tissue damage. In purified form, many Mtb components can activate innate immune pathways.
View Article and Find Full Text PDFFor many intracellular pathogens, the phagosome is the site of events and interactions that shape infection outcome. Phagosomal membrane damage, in particular, is proposed to benefit invading pathogens. To define the innate immune consequences of this damage, we profiled macrophage transcriptional responses to wild-type (Mtb) and mutants that fail to damage the phagosomal membrane.
View Article and Find Full Text PDFA key to the pathogenic success of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the capacity to survive within host macrophages. Although several factors required for this survival have been identified, a comprehensive knowledge of such factors and how they work together to manipulate the host environment to benefit bacterial survival are not well understood. To systematically identify Mtb factors required for intracellular growth, we screened an arrayed, non-redundant Mtb transposon mutant library by high-content imaging to characterize the mutant-macrophage interaction.
View Article and Find Full Text PDF