Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium.
View Article and Find Full Text PDFMacrophages are essential to muscle regeneration, as they regulate inflammation, carry out phagocytosis, and facilitate tissue repair. These cells exhibit phenotypic switching from pro-inflammatory (M1) to anti-inflammatory (M2) states during muscle repair, influencing myoblast proliferation, differentiation, and myofiber formation. In Duchenne Muscular Dystrophy (DMD), asynchronous muscle injuries disrupt the normal temporal stages of regeneration, leading to fibrosis and failed regeneration.
View Article and Find Full Text PDFA large diversity of epigenetic factors, such as microRNAs and histones modifications, are known to be capable of regulating gene expression without altering DNA sequence itself. In particular, miR-1 is considered the first essential microRNA in cardiac development. In this study, miR-1 potential role in early cardiac chamber differentiation was analyzed through specific signaling pathways.
View Article and Find Full Text PDFPosttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein.
View Article and Find Full Text PDFNoncoding RNA
May 2024
Transcriptional regulation constitutes a key step in gene expression regulation. Myocyte enhancer factor 2C (MEF2C) is a transcription factor of the MADS box family involved in the early development of several cell types, including muscle cells. Over the last decade, a novel layer of complexity modulating gene regulation has emerged as non-coding RNAs have been identified, impacting both transcriptional and post-transcriptional regulation.
View Article and Find Full Text PDFBiomed Pharmacother
January 2024
Duchenne muscular dystrophy (DMD) is a devastating degenerative disease of skeletal muscles caused by loss of dystrophin, a key protein that maintains muscle integrity, which leads to progressive muscle degeneration aggravated by chronic inflammation, muscle stem cells' (MuSCs) reduced regenerative capacity and replacement of muscle with fibroadipose tissue. Previous research has shown that pharmacological GSK-3β inhibition favors myogenic differentiation and plays an important role in modulating inflammatory processes. Isolecanoric acid (ILA) is a natural product isolated from a fungal culture displaying GSK-3β inhibitory properties.
View Article and Find Full Text PDFThe outermost layer of the heart, the epicardium, is an essential cell population that contributes, through epithelial-to-mesenchymal transition (EMT), to the formation of different cell types and provides paracrine signals to the developing heart. Despite its quiescent state during adulthood, the adult epicardium reactivates and recapitulates many aspects of embryonic cardiogenesis in response to cardiac injury, thereby supporting cardiac tissue remodeling. Thus, the epicardium has been considered a crucial source of cell progenitors that offers an important contribution to cardiac development and injured hearts.
View Article and Find Full Text PDFAims: Atrial fibrillation (AF) has been associated with altered expression of the transcription factor Pitx2c and a high incidence of calcium release-induced afterdepolarizations. However, the relationship between Pitx2c expression and defective calcium homeostasis remains unclear and we here aimed to determine how Pitx2c expression affects calcium release from the sarcoplasmic reticulum (SR) and its impact on electrical activity in isolated atrial myocytes.
Methods: To address this issue, we applied confocal calcium imaging and patch-clamp techniques to atrial myocytes isolated from a mouse model with conditional atrial-specific deletion of Pitx2c.
Heart failure constitutes a clinical complex syndrome with different symptomatic characteristics depending on age, sex, race and ethnicity, among others, which has become a major public health issue with an increasing prevalence. One of the most interesting tools seeking to improve prevention, diagnosis, treatment and prognosis of this pathology has focused on finding new molecular biomarkers since heart failure relies on deficient cardiac homeostasis, which is regulated by a strict gene expression. Therefore, currently, analyses of non-coding RNA transcriptomics have been oriented towards human samples.
View Article and Find Full Text PDFSatellite cells (SCs), muscle stem cells, display functional heterogeneity, and dramatic changes linked to their regenerative capabilities are associated with muscle-wasting diseases. SC behavior is related to endogenous expression of the myogenic transcription factor MYF5 and the propensity to enter into the cell cycle. Here, we report a role for miR-106b reinforcing MYF5 inhibition and blocking cell proliferation in a subset of highly quiescent SC population.
View Article and Find Full Text PDFVarious treatments based on drug administration and radiotherapy have been devoted to preventing, palliating, and defeating cancer, showing high efficiency against the progression of this disease. Recently, in this process, malignant cells have been found which are capable of triggering specific molecular mechanisms against current treatments, with negative consequences in the prognosis of the disease. It is therefore fundamental to understand the underlying mechanisms, including the genes-and their signaling pathway regulators-involved in the process, in order to fight tumor cells.
View Article and Find Full Text PDFFront Cell Dev Biol
July 2022
The knowledge of the molecular mechanisms that regulate embryonic myogenesis from early myogenic progenitors to myoblasts, as well as the emergence of adult satellite stem cells (SCs) during development, are key concepts to understanding the genesis and regenerative abilities of the skeletal muscle. Several previous pieces of evidence have revealed that the transcription factor might be a player within the molecular pathways controlling somite-derived muscle progenitors' fate and SC behavior. However, the role exerted by in the progression from myogenic progenitors to myoblasts including SC precursors remains unsolved.
View Article and Find Full Text PDFIt is well known that multiple microRNAs play crucial roles in cardiovascular development, including miR-133a. Additionally, retinoic acid regulates atrial marker expression. In order to analyse the role of miR-133a as a modulator of retinoic acid signalling during the posterior segment of heart tube formation, we performed functional experiments with miR-133a and retinoic acid by means of microinjections into the posterior cardiac precursors of both primitive endocardial tubes in chick embryos.
View Article and Find Full Text PDFThe importance of the cytoskeleton not only in cell architecture but also as a pivotal element in the transduction of signals that mediate multiple biological processes has recently been highlighted. Broadly, the cytoskeleton consists of three types of structural proteins: (1) actin filaments, involved in establishing and maintaining cell shape and movement; (2) microtubules, necessary to support the different organelles and distribution of chromosomes during cell cycle; and (3) intermediate filaments, which have a mainly structural function showing specificity for the cell type where they are expressed. Interaction between these protein structures is essential for the cytoskeletal mesh to be functional.
View Article and Find Full Text PDFThe epicardium is the outermost cell layer in the vertebrate heart that originates during development from mesothelial precursors located in the proepicardium and septum transversum. The epicardial layer plays a key role during cardiogenesis since a subset of epicardial-derived cells (EPDCs) undergo an epithelial-mesenchymal transition (EMT); migrate into the myocardium; and differentiate into distinct cell types, such as coronary vascular smooth muscle cells, cardiac fibroblasts, endothelial cells, and presumably a subpopulation of cardiomyocytes, thus contributing to complete heart formation. Furthermore, the epicardium is a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis.
View Article and Find Full Text PDFNa1.5 is the predominant cardiac sodium channel subtype, encoded by the gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Na1.
View Article and Find Full Text PDFMicroRNAs have been explored in different organisms and are involved as molecular switches modulating cellular specification and differentiation during the embryonic development, including the cardiovascular system. In this study, we analyze the expression profiles of different microRNAs during early cardiac development. By using whole mount hybridization in developing chick embryos, with microRNA-specific LNA probes, we carried out a detailed study of miR-23b, miR-130a, miR-106a, and miR-100 expression during early stages of embryogenesis (HH3 to HH17).
View Article and Find Full Text PDFBmp and Fgf signaling are widely involved in multiple aspects of embryonic development. More recently non coding RNAs, such as microRNAs have also been reported to play essential roles during embryonic development. We have previously demonstrated that microRNAs, i.
View Article and Find Full Text PDFDeep whole genome and transcriptome sequencing have highlighted the importance of an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs (lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic development, and tissue homeostasis.
View Article and Find Full Text PDFAtrial fibrillation (AF) is the most prevalent cardiac arrhythmia in humans. Genetic and genomic analyses have recently demonstrated that the homeobox transcription factor Pitx2 plays a fundamental role regulating expression of distinct growth factors, microRNAs and ion channels leading to morphological and molecular alterations that promote the onset of AF. Here we address the plausible contribution of long non-coding (lnc)RNAs within the Pitx2>Wnt>miRNA signaling pathway.
View Article and Find Full Text PDFMuscle regeneration is an important homeostatic process of adult skeletal muscle that recapitulates many aspects of embryonic myogenesis. Satellite cells (SCs) are the main muscle stem cells responsible for skeletal muscle regeneration. SCs reside between the myofiber basal lamina and the sarcolemma of the muscle fiber in a quiescent state.
View Article and Find Full Text PDFExpression of Wilms' tumor suppressor transcription factor (WT1) in the embryonic epicardium is essential for cardiac development, but its myocardial expression is little known. We have found that WT1 is expressed at low levels in 20-25% of the embryonic cardiomyocytes. Conditional ablation of WT1 using a cardiac troponin T driver (Tnnt2 ) caused abnormal sinus venosus and atrium development, lack of pectinate muscles, thin ventricular myocardium and, in some cases, interventricular septum and cardiac wall defects, ventricular diverticula and aneurisms.
View Article and Find Full Text PDFCardiovascular development is a complex process that starts with the formation of symmetrically located precardiac mesodermal precursors soon after gastrulation and is completed with the formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcriptional inputs are required to provide adequate regional identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e.
View Article and Find Full Text PDF() are small non-coding required for the post-transcriptional control of gene expression. MicroRNAs play a critical role in modulating muscle regeneration and stem cell behavior. Muscle regeneration is affected in muscular dystrophies, and a critical point for the development of effective strategies for treating muscle disorders is optimizing approaches to target muscle stem cells in order to increase the ability to regenerate lost tissue.
View Article and Find Full Text PDF