Publications by authors named "Amelia A Glazier"

Valosin-containing protein (VCP) acts as a key regulator of cellular protein homeostasis by coordinating protein turnover and quality control. Mutations in VCP lead to (cardio-)myopathy and neurodegenerative diseases such as inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD) or amyotrophic lateral sclerosis (ALS). To date, due to embryonic lethality, no constitutive VCP knockout animal model exists.

View Article and Find Full Text PDF

Background: Pathogenic variants in , encoding cardiac MyBP-C (myosin binding protein C), are the most common cause of familial hypertrophic cardiomyopathy. A large number of unique variants and relatively small genotyped hypertrophic cardiomyopathy cohorts have precluded detailed genotype-phenotype correlations.

Methods: Patients with hypertrophic cardiomyopathy and variants were identified from the Sarcomeric Human Cardiomyopathy Registry.

View Article and Find Full Text PDF

Mutations in cardiac myosin binding protein C (MYBPC3) represent the most frequent cause of familial hypertrophic cardiomyopathy (HCM), making up approximately 50% of identified HCM mutations. MYBPC3 is distinct among other sarcomere genes associated with HCM in that truncating mutations make up the vast majority, whereas nontruncating mutations predominant in other sarcomere genes. Several studies using myocardial tissue from HCM patients have found reduced abundance of wild-type MYBPC3 compared to control hearts, suggesting haploinsufficiency of full-length MYBPC3.

View Article and Find Full Text PDF

Cardiac myosin binding protein C (MYBPC3) is the most commonly mutated gene associated with hypertrophic cardiomyopathy (HCM). Haploinsufficiency of full-length MYBPC3 and disruption of proteostasis have both been proposed as central to HCM disease pathogenesis. Discriminating the relative contributions of these 2 mechanisms requires fundamental knowledge of how turnover of WT and mutant MYBPC3 proteins is regulated.

View Article and Find Full Text PDF

Background: Heterozygous mutations in sarcomere genes in hypertrophic cardiomyopathy (HCM) are proposed to exert their effect through gain of function for missense mutations or loss of function for truncating mutations. However, allelic expression from individual mutations has not been sufficiently characterized to support this exclusive distinction in human HCM.

Methods And Results: Sarcomere transcript and protein levels were analyzed in septal myectomy and transplant specimens from 46 genotyped HCM patients with or without sarcomere gene mutations and 10 control hearts.

View Article and Find Full Text PDF