Field monitoring plays a crucial role in understanding insect dynamics within ecosystems. It facilitates pest distribution assessment, control measure evaluation, and prediction of pest outbreaks. Additionally, it provides important information on bioindicators with which the state of biodiversity and ecological integrity in specific habitats and ecosystems can be accurately assessed.
View Article and Find Full Text PDFThe occurrence and distribution of insects and their possible associations with plant species are largely unknown in Germany and baseline data to monitor future trends are urgently needed. Using newly-designed automated Malaise trap multi-samplers, the occurrence of insect species and their potential associations with plants was monitored synchronously at two contrasting field sites in Germany: an urban botanical garden and a forest research station. Taxa were identified by metabarcoding of the insects and the plant traces present in the preservative ethanol of the Malaise trap samples.
View Article and Find Full Text PDFIn this study, we aim to uncover diet preferences for the insectivorous bat (Leisler's bat, the lesser noctule) and to provide recommendations for conservation of the species, based on the analysis of prey source habitats. Using a novel guano trap, we sampled bat faeces at selected roosts in a forest in Germany and tested two mitochondrial markers (COI and 16S) and three primer pairs for the metabarcoding of bat faecal pellets. We found a total of 17 arthropod prey orders comprising 358 species in guano.
View Article and Find Full Text PDFWith increased application of DNA metabarcoding in biodiversity assessment, various laboratory protocols have been optimized, and their further evaluation is subject of current research. Homogenization of bulk samples and subsequent DNA extraction from a subsample of destructed tissue is a common first stage of the metabarcoding process. This can either be conducted using sample material soaked in a storage fixative, e.
View Article and Find Full Text PDFDNA metabarcoding is routinely used for biodiversity assessment, in particular targeting highly diverse groups for which limited taxonomic expertise is available. Various protocols are currently in use, although standardization is key to its application in large-scale monitoring. DNA metabarcoding of arthropod bulk samples can be conducted either destructively from sample tissue, or nondestructively from sample fixative or lysis buffer.
View Article and Find Full Text PDFForest habitats host enormous diversity, but little is known about the seasonal turnover of arthropod species between the above- and below ground forest layers. In this study, we used metabarcoding approaches to uncover arthropod diversity in different forest types and seasons. Our study shows that metabarcoding soil eDNA and Malaise trap bulk samples can provide valuable insights into the phenology and life cycles of arthropods.
View Article and Find Full Text PDF