Whey protein concentrates (WPCs) are gaining importance as a functional ingredient due to their high technological and functional properties and their diverse application in the food industry. In this study, Camel milk whey (CW) was separated from skimmed camel milk, then either spray-dried (SD) at 170, 185 and 200 °C, or treated by ultrasonication (US) (20 kHz) for 5, 10 and 15 min followed by freeze-drying to obtain camel milk whey powder (CWP). The structural analysis of CWP was carried out by Fourier-Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) which showed no significant difference in the functional groups profile of US samples compared to control and SD samples.
View Article and Find Full Text PDFCamel milk transformation into cheese remains an objective to be improved today. This study aimed to improve camel milk clotting using a crude extract from green pods of carob as a substitute for commercial rennet. The composition of the crude carob extract was determined for dry matter and protein content.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
July 2022
This study aimed to evaluate the effect of various heating temperatures on the antioxidant activities of camel milk caseins. The samples were processed with three different heat treatments: Pasteurization at low and high temperatures and boiling. Fresh camel milk (unheated) was used as a control.
View Article and Find Full Text PDF