BMP signaling is crucial for differentiation of secretory ameloblasts, the cells that secrete enamel matrix. However, whether BMP signaling is required for differentiation of maturation-stage ameloblasts (MA), which are instrumental for enamel maturation into hard tissue, is hitherto unknown. To address this, we used an in vivo genetic approach which revealed that combined deactivation of the and genes in the murine dental epithelium causes development of dysmorphic and dysfunctional MA.
View Article and Find Full Text PDFIn mammals Homer1, Homer2 and Homer3 constitute a family of scaffolding proteins with key roles in Ca signaling and Ca transport. In rodents, Homer proteins and mRNAs have been shown to be expressed in various postnatal tissues and to be enriched in brain. However, whether the Homers are expressed in developing tissues is hitherto largely unknown.
View Article and Find Full Text PDFDeciphering how signaling pathways interact during development is necessary for understanding the etiopathogenesis of congenital malformations and disease. In several embryonic structures, components of the Hedgehog and retinoic acid pathways, two potent players in development and disease are expressed and operate in the same or adjacent tissues and cells. Yet whether and, if so, how these pathways interact during organogenesis is, to a large extent, unclear.
View Article and Find Full Text PDFLongitudinal bone growth in children is sustained by growth plates, narrow discs of cartilage that provide a continuous supply of chondrocytes for endochondral ossification. However, it remains unknown how this supply is maintained throughout childhood growth. Chondroprogenitors in the resting zone are thought to be gradually consumed as they supply cells for longitudinal growth, but this model has never been proved.
View Article and Find Full Text PDFThe interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1.
View Article and Find Full Text PDFPericytes are critical for cerebrovascular maturation and development of the blood-brain barrier (BBB), but their role in maintenance of the adult BBB, and how CNS pericytes differ from those of other tissues, is less well understood. We show that the forkhead transcription factor Foxf2 is specifically expressed in pericytes of the brain and that Foxf2(-/-) embryos develop intracranial hemorrhage, perivascular edema, thinning of the vascular basal lamina, an increase of luminal endothelial caveolae, and a leaky BBB. Foxf2(-/-) brain pericytes were more numerous, proliferated faster, and expressed significantly less Pdgfrβ.
View Article and Find Full Text PDFCarbonic anhydrases (CAs) play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution patterns of eight CAs in mice.
View Article and Find Full Text PDFFront Oral Biol
September 2012
Vertebrate and invertebrate model organisms are essential for deciphering biological processes. One of these, the mouse, proved to be a valuable model for understanding the etiopathogenesis of a vast array of human diseases, including congenital malformations such as orofacial clefting conditions. This small mammal's usefulness in cleft lip and palate research stems not only from the striking anatomical and molecular similarities of lip and palate development between human and mouse embryos, but also from its amenability to experimental and genetic manipulation.
View Article and Find Full Text PDFWe present direct evidence of an activator-inhibitor system in the generation of the regularly spaced transverse ridges of the palate. We show that new ridges, called rugae, that are marked by stripes of expression of Shh (encoding Sonic hedgehog), appear at two growth zones where the space between previously laid rugae increases. However, inter-rugal growth is not absolutely required: new stripes of Shh expression still appeared when growth was inhibited.
View Article and Find Full Text PDFThe aim of this study was to analyse the hitherto largely unknown expression patterns of some specific cellular and extracellular molecules during palate and nasal cavity development. We showed that epithelia of the developing palate and the vomerine epithelium express similar sets of structural proteins. With the exception of keratin 15, which becomes barely detectable in the elevated palatal shelves, nearly all of these proteins become upregulated at the presumptive areas of fusion and in the adhering epithelia of the palate and nasal septum.
View Article and Find Full Text PDFCleft lip and cleft palate, which can also occur together as cleft lip and palate, are frequent and debilitating congenital malformations, with complex geneses that have both genetic and environmental factors implicated. Mutations in the genes encoding the p53 homolog p63 and interferon regulatory factor 6 (IRF6) are major causes of cleft lip and cleft palate, but the molecular and cellular mechanisms underlying this have not been clear. However, in this issue of the JCI, Thomason et al.
View Article and Find Full Text PDFExpression of Sonic Hedgehog (Shh) in the posterior mesenchyme of the developing limb bud regulates patterning and growth of the developing limb by activation of the Hedgehog (Hh) signaling pathway. Through the analysis of Shh and Hh signaling target genes, it has been shown that activation in the limb bud mesoderm is required for normal limb development to occur. In contrast, it has been stated that Hh signaling in the limb bud ectoderm cannot occur because components of the Hh signaling pathway and Hh target genes have not been found in this tissue.
View Article and Find Full Text PDFCurr Top Dev Biol
March 2009
Cleft lip and cleft palate are frequent human congenital malformations with a complex multifactorial etiology. These orofacial clefts can occur as part of a syndrome involving multiple organs or as isolated clefts without other detectable defects. Both forms of clefting constitute a heavy burden to the affected individuals and their next of kin.
View Article and Find Full Text PDFThe extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars.
View Article and Find Full Text PDFTmem16a, Tmem16c, Tmem16f, Tmem16h and Tmem16k belong to the newly identified Tmem16 gene family encoding eight-pass transmembrane proteins. We have analyzed the expression patterns of these genes during mouse cephalic development. In the central nervous system, Tmem16a transcripts were abundant in the ventricular neuroepithelium, whereas the other Tmem16 family members were readily detectable in the subventricular zone and differentiating fields.
View Article and Find Full Text PDFWe show that removing the Shh signal tranducer Smoothened from skin epithelium secondarily results in excess Shh levels in the mesenchyme. Moreover, the phenotypes we observe reflect decreased epithelial Shh signaling, yet increased mesenchymal Shh signaling. For example, the latter contributes to exuberant hair follicle (HF) induction, while the former depletes the resulting follicular stem cell niches.
View Article and Find Full Text PDFDifferent sodium-dependent inorganic phosphate (P(i)) uptake mechanisms play a major role in cellular P(i) homeostasis. The function and detailed distribution patterns of the type III Na(+)-phosphate cotransporter, PiT-2, in different organs during development are still largely unknown. We therefore examined the temporospatial expression patterns of Pit2 during murine odontogenesis.
View Article and Find Full Text PDFCompared with the embryonic development of other organs, development of the secondary palate is seemingly simple. However, each step of palatogenesis, from initiation until completion, is subject to a tight molecular control that is governed by epithelial-mesenchymal interactions. The importance of a rigorous molecular regulation of palatogenesis is reflected when loss of function of a single protein generates cleft palate, a frequent malformation with a complex etiology.
View Article and Find Full Text PDFDuring palatogenesis, fusion of the palatine shelves is a crucial event, the failure of which results in the birth defect, cleft palate. The fate of the midline epithelial seam (MES), which develops transiently upon contact of the two palatine shelves, is still strongly debated. Three major mechanisms underlying the regression of the MES upon palatal fusion have been proposed: (1) apoptosis has been evidenced by morphological and molecular criteria; (2) epithelial-mesenchymal transformation has been suggested based on ultrastructural and lipophilic dye cell labeling observations; and (3) migration of MES cells toward the oral and nasal areas has been proposed following lipophilic dye cell labeling.
View Article and Find Full Text PDFWe have previously demonstrated that the transcription factor nuclear factor (NF)1-C2 plays an important role in the mammary gland for the activation of the tumor suppressor gene p53. It also activates the milk genes carboxyl ester lipase and whey acidic protein, implying that NF1-C2 participates both in the establishment of a functional gland and in protection of the gland against tumorigenesis during proliferation. In this study, we have developed a new sensitive NF1-C2-specific antiserum for immunohistochemical analyses of the NF1-C2 distribution during mammary gland development.
View Article and Find Full Text PDFClassical research has suggested that early palate formation develops via epithelial-mesenchymal interactions, and in this study we reveal which signals control this process. Using Fgf10-/-, FGF receptor 2b-/- (Fgfr2b-/-), and Sonic hedgehog (Shh) mutant mice, which all exhibit cleft palate, we show that Shh is a downstream target of Fgf10/Fgfr2b signaling. Our results demonstrate that mesenchymal Fgf10 regulates the epithelial expression of Shh, which in turn signals back to the mesenchyme.
View Article and Find Full Text PDFThe signals that promote regional growth and development of the brain are not well understood. Sonic hedgehog (Shh) is produced by Purkinje cells of the cerebellum and is a potent inducer of granule cell proliferation. Here, we demonstrate that Shh protein is present in the murine cerebellum during late stages of embryogenesis and is associated with Purkinje cell bodies and their processes.
View Article and Find Full Text PDFThyroid dysgenesis encountered in 85% of patients with congenital hypothyroidism is a morphologically heterogeneous condition with primarily unknown pathogenesis. Here we identify sonic hedgehog (Shh) as a novel regulator of thyroid development. In Shh knockout mice the thyroid primordium is correctly specified in the pharyngeal endoderm, but budding and dislocation are slightly delayed.
View Article and Find Full Text PDFSharpe and colleagues unveil a crucial role for NF-kappaB activity in tooth development, and show that IKKalpha functions both within and independently from the NF-kappaB pathway during molar and incisor morphogenesis, respectively (in the February issue of Developmental Cell).
View Article and Find Full Text PDFTo directly test the requirement for hedgehog signaling in the telencephalon from early neurogenesis, we examined conditional null alleles of both the Sonic hedgehog and Smoothened genes. While the removal of Shh signaling in these animals resulted in only minor patterning abnormalities, the number of neural progenitors in both the postnatal subventricular zone and hippocampus was dramatically reduced. In the subventricular zone, this was partially attributable to a marked increase in programmed cell death.
View Article and Find Full Text PDF