Publications by authors named "Ameet Soni"

High-throughput screening (HTS) using new approach methods is revolutionizing toxicology. Asexual freshwater planarians are a promising invertebrate model for neurotoxicity HTS because their diverse behaviors can be used as quantitative readouts of neuronal function. Currently, three planarian species are commonly used in toxicology research: Dugesia japonica, Schmidtea mediterranea, and Girardia tigrina.

View Article and Find Full Text PDF

Parkinson's, a progressive neural disorder, is difficult to identify due to the hidden nature of the symptoms associated. We present a machine learning approach that uses a definite set of features obtained from the Parkinsons Progression Markers Initiative(PPMI) study as input and classifies them into one of two classes: PD(Parkinson's disease) and HC(Healthy Control). As far as we know this is the first work in applying machine learning algorithms for classifying patients with Parkinson's disease with the involvement of domain expert during the feature selection process.

View Article and Find Full Text PDF

Protein X-ray crystallography--the most popular method for determining protein structures--remains a laborious process requiring a great deal of manual crystallographer effort to interpret low-quality protein images. Automating this process is critical in creating a high-throughput protein-structure determination pipeline. Previously, our group developed ACMI, a probabilistic framework for producing protein-structure models from electron-density maps produced via X-ray crystallography.

View Article and Find Full Text PDF

Uch37 is a de-ubiquitylating enzyme that is functionally linked with the 26S proteasome via Rpn13, and is essential for metazoan development. Here, we report the X-ray crystal structure of full-length human Uch37 at 2.95 Å resolution.

View Article and Find Full Text PDF

Several methods for automatically constructing a protein model from an electron-density map require searching for many small protein-fragment templates in the density. We propose to use the spherical-harmonic decomposition of the template and the maps density to speed this matching. Unlike other template-matching approaches, this allows us to eliminate large portions of the map unlikely to match any templates.

View Article and Find Full Text PDF

Motivation: One bottleneck in high-throughput protein crystallography is interpreting an electron-density map, that is, fitting a molecular model to the 3D picture crystallography produces. Previously, we developed ACMI (Automatic Crystallographic Map Interpreter), an algorithm that uses a probabilistic model to infer an accurate protein backbone layout. Here, we use a sampling method known as particle filtering to produce a set of all-atom protein models.

View Article and Find Full Text PDF