Current research on catalysts for proton exchange membrane fuel cells (PEMFC) is based on obtaining higher catalytic activity than platinum particle catalysts on porous carbon. In search of a more sustainable catalyst other than platinum for the catalytic conversion of water to hydrogen gas, a series of nanoparticles of transition metals viz., Rh, Co, Fe, Pt and their composites with functionalized graphene such as RhNPs@f-graphene, CoNPs@f-graphene, PtNPs@f-graphene were synthesized and characterized by SEM and TEM techniques.
View Article and Find Full Text PDFWith large surface area and versatile electronic behaviour, the composites of Fe₄S₄(SRS)₄ nanoclusters and functionalized carbon nanotubes (f-CNTs), are expected to catalyze the conversion of protons to hydrogen gas at lower electro-potentials with higher output than a platinum electrode. In search of a non-noble metal based catalytic material, we report for the first time, the isolation of unimolecular iron-sulfur cubane cluster, [Fe₄(-S)₄(mnt)₄], () (mnt = maleonitriledithiolate) as nanocubes (63×85×120 nm) in MeCN-EtOH (MeCN is acetonitrile, while EtOH is ethanol) solvents and bimolecular [NBu₄]₄[Fe₄(-S)₄(mnt)₄] as nanocuboctahedra (120×121×125 nm) in pure EtOH. The cubic shape of the nanocrystal reminds its geometrical relationship with a molecular cube and one of sides of the nanocube and nanocuboctahedron matches at 120 nm.
View Article and Find Full Text PDFThe development of alternate catalysts that utilize non-precious metal based electrode materials such as the first row transition metal complexes is an important goal for economic fuel cell design. In this direction, a new FeS cubane type cluster, [PPh][FeS(DMET)] (1) (DMET = cis-1,2-dicarbomethoxyethylene dithiolate) and its composite with functionalized graphene, (1@graphene) have been synthesized and characterized. The presence of nanocrystalline structures on graphene matrix in TEM and SEM images of 1@graphene indicate that the cluster (1) has been immobilized.
View Article and Find Full Text PDFUnderstanding the nature of interactions of targeted drug-delivery vehicles, such as functionalized carbon nanotubes (f-CNTs) and their composites, with a cell or its organelles or DNA, where water is a major constituent, requires molecular-level understanding of f-CNTs with analogous chemical systems. The nature of interaction has not yet been explored within the scope of formation of giant aggregates by self-assembly processes. Crystals of platinum(II) dithiolene [Pt(mnt)2 ][PPh4 ]2 (1) and gadolinium(III) dithiolene [Gd(mnt)3 ][PPh4 ]3 (2) (mnt=maleonitrile dithiolate) form nanospheres (diameter 88 nm) and nanoflowers (400-600 nm) in acetonitrile/water and DMF/water solvent mixtures, respectively.
View Article and Find Full Text PDFA super reduced Fe(4)S(4) cluster with a sulfur based radical, [NBu(4)](4)[Fe(3)(III)Fe(II)(μ(3)-S)(4)(mnt)(3)(6-)(mnt)(1-)˙](4-)˙, (1) (mnt, maleonitrile dithiolate) which evolves H(2)S gas on treatment with acid under ambient conditions has been synthesized and structurally characterized. The Fe-S distances in 1 are in the range 2.246-2.
View Article and Find Full Text PDFThe synthesis, crystal structure, and spectroscopic characterization of [PPh(4)](2)[(bdt)W(O)(S(2))Cu(SC(6)H(4)S(•))] (3; bdt = benzenedithiolate) relevant to the active site of carbon monoxide dehydrogenase are presented. Curiously, in 3, the copper(I) benzenemonothiolate subcenter possesses a dangling thiyl radical that is stabilized by a disulfido-bridged oxo tungsten dithiolene core. The benzenedithiolate ligand, which is generally bidentate in nature, acts as a bidentate and also as a monodentate in 3.
View Article and Find Full Text PDFLanthanide complexes of formulation [La(B)(2)(NO(3))(3)] (1-3) and [Gd(B)(2)(NO(3))(3)] (4-6), where B is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 4), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2, 5) and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 3, 6), have been prepared, characterized from physicochemical data, and their photoinduced DNA and protein cleavage activity studied. The photocytotoxicity of the dppz complexes 3 and 6 has been studied using HeLa cancer cells. The complexes exhibit ligand centered bands in the UV region.
View Article and Find Full Text PDFIron(III) complexes [Fe(L)(2)]Cl (1-3), where L is monoanionic N-salicylidene-arginine (sal-argH for 1), hydroxynaphthylidene-arginine (nap-argH for 2) and N-salicylidene-lysine (sal-lysH for 3), were prepared and their DNA binding and photo-induced DNA cleavage activity studied. Complex 3 as its hexafluorophosphate salt [Fe(sal-lysH)(2)](PF(6)).6H(2)O (3a) was structurally characterized by single crystal X-ray crystallography.
View Article and Find Full Text PDFThe electronic structures of two formally isoelectronic transition-metal dithiolato complexes [Fe(L)2]2- (1) and [Co(L Bu)2]1- (2) both possessing a spin triplet ground state (St=1) have been investigated by various spectroscopic and density functional methods; H2L Bu represents the pro-ligand 3,5-di-tert-butylbenzene-1,2-dithiol and H2L is the corresponding unsubstituted benzene-1,2-dithiol. An axial zero-field splitting (D) of +32 cm(-1) for 2 has been measured independently by SQUID magnetometry, far-infrared absorption, and variable-temperature and variable-field (VTVH) magnetic circular dichroism spectroscopies. A similar D value of +28 cm(-1) is obtained for 1 on the basis of VTVH SQUID measurements.
View Article and Find Full Text PDFThe coordination chemistry of the ligands o-aminothiophenol, H(abt), 4,6-di-tert-butyl-2-aminothiophenol, H[L(AP)], and 1,2-ethanediamine-N,N'-bis(2-benzenethiol), H(4)('N(2)S(2')), with FeCl(2) under strictly anaerobic and increasingly aerobic conditions has been systematically investigated. Using strictly anaerobic conditions, the neutral, air-sensitive, yellow complexes (mu-S,S)[Fe(II)(abt)(2)](2) (1), (mu-S,S)[Fe(II)(L(AP))(2)](2).8CH(3)OH (2), and (mu-S,S)[Fe(II)('H(2)N(2)S(2'))](2).
View Article and Find Full Text PDF