Publications by authors named "Ameer Pasha Hosseinbor"

Recently, the HyperSPHARM algorithm was proposed to parameterize multiple disjoint objects in a holistic manner using the 4D hyperspherical harmonics. The HyperSPHARM coefficients are global; they cannot be used to directly infer localized variations in signal. In this paper, we present a unified wavelet framework that links Hyper-SPHARM to the diffusion wavelet transform.

View Article and Find Full Text PDF

We present a novel surface parameterization technique using hyperspherical harmonics (HSH) in representing compact, multiple, disconnected brain subcortical structures as a single analytic function. The proposed hyperspherical harmonic representation (HyperSPHARM) has many advantages over the widely used spherical harmonic (SPHARM) parameterization technique. SPHARM requires flattening 3D surfaces to 3D sphere which can be time consuming for large surface meshes, and can't represent multiple disconnected objects with single parameterization.

View Article and Find Full Text PDF

The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues.

View Article and Find Full Text PDF

The estimation of the ensemble average propagator (EAP) directly from q-space DWI signals is an open problem in diffusion MRI. Diffusion spectrum imaging (DSI) is one common technique to compute the EAP directly from the diffusion signal, but it is burdened by the large sampling required. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed.

View Article and Find Full Text PDF