Publications by authors named "Ameer Azam"

This study focuses on the synthesis of a novel Cerium-Magnesium (CeO-MgO) binary oxide nanomaterials by a simple co-precipitation process and used to remove harmful pollutants such as Cr(VI), Cu(II), and F. The morphology, phase, crystallite size, thermal stability, functional groups, surface area, and porosity of the synthesized nanomaterial were determined by using XRD, SEM, FTIR, TGA/DTA, and BET studies. The prepared nanomaterials showed adsorption selectivity of Cu(II) ≈ F> Cr(VI) with a high adsorption capacity of 84.

View Article and Find Full Text PDF

Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).

View Article and Find Full Text PDF

This work focuses on the structural, morphological, optical, photocatalytic, antibacterial properties of pure CeO nanoparticles (NPs) and graphene oxide (GO) based CeO nanocomposites (GO-1/CeO, GO-5/CeO, GO-10/CeO, GO-15/CeO), synthesized using the sol-gel auto-combustion and subsequent sonication method, respectively. The single-phase cubic structure of CeO NPs was confirmed by Rietveld refined XRD, HRTEM, FTIR and Raman spectroscopy. The average crystallite size was calculated using Debye Scherrer formula and found to increase from 20 to 25 nm for CeO to GO-15/CeO samples, respectively.

View Article and Find Full Text PDF

Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis.

View Article and Find Full Text PDF

The findings of an extensive experimental research study on the usage of nano-sized cement powder and other additives combined to form cement-fine-aggregate matrices are discussed in this work. In the laboratory, dry and wet methods were used to create nano-sized cements. The influence of these nano-sized cements, nano-silica fumes, and nano-fly ash in different proportions was studied to the evaluate the engineering properties of the cement-fine-aggregate matrices concerning normal-sized, commercially available cement.

View Article and Find Full Text PDF

Herein, we report the synthesis of Ce-Al (1 : 1, 1 : 3, 1 : 6, and 1 : 9) binary oxide nanoparticles by a simple co-precipitation method at room temperature to be applied for defluoridation of an aqueous solution. The characterization of the synthesized nanomaterial was performed by XRD (X-ray diffraction), FTIR (Fourier transform infrared) spectroscopy, TGA/DTA (thermogravimetric analysis/differential thermal analysis), BET (Brunauer-Emmett-Teller) surface analysis, and SEM (scanning electron microscopy). Ce-Al binary oxides in 1 : 6 molar concentration were found to have the highest surface area of 110.

View Article and Find Full Text PDF

Nanotechnology has received much attention in treating contaminated waters. In the present study, a facile co-precipitation method was employed to synthesize a novel iron and magnesium based binary metal oxide using a stoichiometrically fixed amount of FeNO·9HO and MgNO·6HO in a proportion of molar concentration 1:1 and was later evaluated in removing As (III) from contaminated waters. Characterization of the prepared nanomaterial was done using X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX) and ultraviolet-visible spectrophotometry (UV-VIS).

View Article and Find Full Text PDF

The contribution of nanoparticles (NPs) in physiology of the plants became the new area of interest for the physiologists; as it is very much cost effective compared to the phytohormones. Our present investigation was also based on this interest in which the same doses (50 mg/L) of four different NPs were sprayed on stressed and non-stressed foliage. The experiment was conducted to assess the impact of four NPs viz.

View Article and Find Full Text PDF

Aims: Globally, scientists are working to find more efficient antimicrobial drugs to treat microbial infections and kill drug-resistant bacteria.

Background: Despite the availability of numerous antimicrobial drugs, bacterial infections still pose a serious threat to global health. A constant decline in the effectiveness of antibiotics owing to their repeated exposure as well as a short-lasting antimicrobial activity led to the demand for developing novel therapeutic agents capable of controlling microbial infections.

View Article and Find Full Text PDF

Magnesium Ferrite (MgFeO) spinel structures prepared by a solid-state reaction was used as an anode modifier in the microbial fuel cell (MFC) treatment of Congo red dye. The performance of the reactors with unmodified stainless-steel mesh anode (CR-1) and MgFeO coated stainless steel mesh anode (CR-2) were tested and compared followed by aerobic treatment. The peak power density was observed to be 295.

View Article and Find Full Text PDF

In this research work, SnO, NiO and SnO/NiO nanocomposites were synthesized at low temperature by modified sol-gel method using ultrasonication. Prepared samples were investigated for their properties employing various characterization techniques. X-ray diffraction (XRD) patterns confirmed the purity and phase of the samples as no secondary phase was detected.

View Article and Find Full Text PDF

Functionalized graphene oxide nano-sheets (PAni-Ag-GONC) were prepared and employed as carrier for covalent immobilization of trypsin. This low cost setting, which involves loading of high amount of enzyme on the matrix, displayed significantly enhanced thermo-stability and pH resistance. The nano-composite (NC) bound trypsin preserved 90% of activity whereas native trypsin retained only 44% of activity after 60 days of storage at a temperature of 4°C.

View Article and Find Full Text PDF

The aim of the present study was to assess the effect of diethylcarbamazine (DEC), siver nanoparticles (AgNPs), nitazoxanide (NTZ), and a combination of nitazoxanide with silver nanoparticle (NTZ+AgNPs) against the microfilariae of Setaria cervi in experimentally infected albino rats. The NTZ+AgNPs was synthesized and subsequently characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible absorption Spectra (UV-VIS), Fourier transforms infrared spectroscopy (FTIR), and energy dispersive X-ray (EDX) spectra. Twenty male albino rats were divided into 5 groups.

View Article and Find Full Text PDF

Nanotechnology is a potential area that revolutionizes almost every sector of life and is predicted to become a major economic force in the near future. Recently, nanomaterials have received great attention for their properties at nanoscale regime and their applications in many areas primarily, agriculture and food sectors. The Nanomaterials are dispersed or solid particles, with a size range of 1-100 nm.

View Article and Find Full Text PDF

The wider applications of nanoparticles (NPs) has evoked a world-wide concern due to their possible risk of toxicity in humans and other organisms. Aggregation and accumulation of NPs into cell leads to their interaction with biological macromolecules including proteins, nucleic acids and cellular organelles, which eventually induce toxicological effects. Application of toxicogenomics to investigate molecular pathway-based toxicological consequences has opened new vistas in nanotoxicology research.

View Article and Find Full Text PDF

Large-scale synthesis and release of nanomaterials in environment is a growing concern for human health and ecosystem. Therefore, we have investigated the cytotoxic and genotoxic potential of zinc oxide nanoparticles (ZnO-NPs), zinc oxide bulk (ZnO-Bulk), and zinc ions (Zn) in treated roots of Allium cepa, under hydroponic conditions. ZnO-NPs were characterized by UV-visible, XRD, FT-IR spectroscopy and TEM analyses.

View Article and Find Full Text PDF

In this work, large-scale and single-crystalline ZnO nanotubes were fabricated by a simple technique from an aqueous solution at a low temperature of 65 °C. According to detailed morphology, structural and compositional analyses showed that the ZnO nanotubes [diameter ~200 nm (wall thickness ~50 nm); length ~1 µm] have single-crystallite with wurtzite structure. As-prepared ZnO nanotubes showed an effective fluorescence quenching for the detection of calf thymus DNA.

View Article and Find Full Text PDF

The adsorption process has been used as an effective technique for the removal of metal ions from aqueous solutions. Groundwater remediation by nanoparticles has received interest in recent years. In the present study, a binary metal oxide of Fe-Cu was prepared and used for the removal of hexavalent chromium from aqueous solution.

View Article and Find Full Text PDF

ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses.

View Article and Find Full Text PDF

Well-aligned and single-crystalline zinc oxide (ZnO) nanorod arrays were grown on silicon (Si) substrate using a wet chemical route for the photodegradation of organic dyes. Structural analysis using X-ray diffraction, high-resolution transmission electron microscopy, and selected area electron diffraction confirmed the formation of ZnO nanorods grown preferentially oriented in the (001) direction and with a single phase nature with a wurtzite structure. Field emission scanning electron microscopy and transmission electron microscopy micrographs showed that the length and diameter of the well-aligned rods were about ~350-400 nm and ~80-90 nm, respectively.

View Article and Find Full Text PDF

Over the past couple of decades there have been major advances in the field of nanoscience and nanotechnology. Many applications have sprouted from these fields of research. It is essential, given the scale of the materials, to attain accurate, valid and reproducible measurements.

View Article and Find Full Text PDF

High-quality single-crystalline SnO₂ nanorods were synthesized using a microwave-assisted solution method. The nanorods were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), ultraviolet-visible and Raman spectroscopy, Brunauer-Emmett-Teller (BET), and electrical resistance measurements. The XRD pattern indicated the formation of single-phase SnO₂ nanorods with rutile structure.

View Article and Find Full Text PDF

Biofabricated metal nanoparticles are generally biocompatible, inexpensive, and ecofriendly, therefore, are used preferably in industries, medical and material science research. Considering the importance of biofabricated materials, we isolated, characterized and identified a novel bacterial strain OS4 of Stenotrophomonas maltophilia (GenBank: JN247637.1).

View Article and Find Full Text PDF

Natural radioactivity in soil samples collected from different places of Bulandshahr, Hapur and Meerut city of Uttar Pradesh, India, using a low-level counting multichannel gamma-ray spectrometer system comprising an NaI(Tl) crystal. The range of (238)U, (232)Th and (40)K activity concentrations varied from 29.6 to 69.

View Article and Find Full Text PDF

Background: Nanomaterials have unique properties compared to their bulk counterparts. For this reason, nanotechnology has attracted a great deal of attention from the scientific community. Metal oxide nanomaterials like ZnO and CuO have been used industrially for several purposes, including cosmetics, paints, plastics, and textiles.

View Article and Find Full Text PDF