Publications by authors named "Amee J George"

Povidone-iodine (PVP-I) inactivates a broad range of pathogens. Despite its widespread use over decades, the safety of PVP-I remains controversial. Its extended use in the current SARS-CoV-2 virus pandemic urges the need to clarify safety features of PVP-I on a cellular level.

View Article and Find Full Text PDF

The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood.

View Article and Find Full Text PDF

SNAT2 (SLC38A2) is a sodium-dependent neutral amino acid transporter, which is important for the accumulation of amino acids as nutrients, the maintenance of cellular osmolarity, and the activation of mTORC1. It also provides net glutamine for glutaminolysis and consequently presents as a potential target to treat cancer. A high-throughput screening assay was developed to identify new inhibitors of SNAT2 making use of the inducible nature of SNAT2 and its electrogenic mechanism.

View Article and Find Full Text PDF

Mutations in genes encoding subunits of the cohesin complex are common in several cancers, but may also expose druggable vulnerabilities. We generated isogenic MCF10A cell lines with deletion mutations of genes encoding cohesin subunits SMC3, RAD21, and STAG2 and screened for synthetic lethality with 3009 FDA-approved compounds. The screen identified several compounds that interfere with transcription, DNA damage repair and the cell cycle.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a new enzyme-linked immunosorbent assay to assess immune responses and found it provided excellent accuracy for detecting virus-specific antibodies.
  • * The seroprevalence of SARS-CoV-2 in elective surgery patients in Australia was estimated at 0.28%, indicating low transmission rates before July 2020 and confirming the assay's effectiveness.
View Article and Find Full Text PDF

Exquisite regulation of PI3K/AKT/mTORC1 signaling is essential for homeostatic control of cell growth, proliferation, and survival. Aberrant activation of this signaling network is an early driver of many sporadic human cancers. Paradoxically, sustained hyperactivation of the PI3K/AKT/mTORC1 pathway in nontransformed cells results in cellular senescence, which is a tumor-suppressive mechanism that must be overcome to promote malignant transformation.

View Article and Find Full Text PDF

The nucleolus is a dynamic subnuclear compartment that has a number of different functions, but its primary role is to coordinate the production and assembly of ribosomes. For well over 100 years, pathologists have used changes in nucleolar number and size to stage diseases such as cancer. New information about the nucleolus' broader role within the cell is leading to the development of drugs which directly target its structure as therapies for disease.

View Article and Find Full Text PDF

Over the last decade, our appreciation of the importance of the nucleolus for cellular function has progressed from the ordinary to the extraordinary. We no longer think of the nucleolus as simply the site of ribosome production, or a dynamic subnuclear body noted by pathologists for its changes in size and shape with malignancy. Instead, the nucleolus has emerged as a key controller of many cellular processes that are fundamental to normal cell homeostasis and the target for dysregulation in many human diseases; in some cases, independent of its functions in ribosome biogenesis.

View Article and Find Full Text PDF

Drugs that target the Renin-Angiotensin System (RAS) have recently come into focus for their potential utility as cancer treatments. The use of Angiotensin Receptor Blockers (ARBs) and Angiotensin-Converting Enzyme (ACE) Inhibitors (ACEIs) to manage hypertension in cancer patients is correlated with improved survival outcomes for renal, prostate, breast and small cell lung cancer. Previous studies demonstrate that the Angiotensin Receptor Type I (AT1R) is linked to breast cancer pathogenesis, with unbiased analysis of gene-expression studies identifying significant up-regulation of AGTR1, the gene encoding AT1R in ER+ve/HER2-ve tumors correlating with poor prognosis.

View Article and Find Full Text PDF

Despite the development of novel drugs, the prospects for many patients with acute myeloid leukemia (AML) remain dismal. This study reveals that the selective inhibitor of RNA polymerase I (Pol I) transcription, CX-5461, effectively treats aggressive AML, including mixed-lineage leukemia-driven AML, and outperforms standard chemotherapies. In addition to the previously characterized mechanism of action of CX-5461 (ie, the induction of p53-dependent apoptotic cell death), the inhibition of Pol I transcription also demonstrates potent efficacy in p53null AML in vivo.

View Article and Find Full Text PDF

Hyperactivation of the PI3K/AKT/mTORC1 signaling pathway is a hallmark of the majority of sporadic human cancers. Paradoxically, chronic activation of this pathway in nontransformed cells promotes senescence, which acts as a significant barrier to malignant progression. Understanding how this oncogene-induced senescence is maintained in nontransformed cells and conversely how it is subverted in cancer cells will provide insight into cancer development and potentially identify novel therapeutic targets.

View Article and Find Full Text PDF

RNA polymerase I (Pol I)-mediated transcription of the ribosomal RNA genes (rDNA) is confined to the nucleolus and is a rate-limiting step for cell growth and proliferation. Inhibition of Pol I by CX-5461 can selectively induce p53-mediated apoptosis of tumour cells in vivo. Currently, CX-5461 is in clinical trial for patients with advanced haematological malignancies (Peter Mac, Melbourne).

View Article and Find Full Text PDF

Unlabelled: Ribosome biogenesis and protein synthesis are dysregulated in many cancers, with those driven by the proto-oncogene c-MYC characterized by elevated Pol I-mediated ribosomal rDNA transcription and mTORC1/eIF4E-driven mRNA translation. Here, we demonstrate that coordinated targeting of rDNA transcription and PI3K-AKT-mTORC1-dependent ribosome biogenesis and protein synthesis provides a remarkable improvement in survival in MYC-driven B lymphoma. Combining an inhibitor of rDNA transcription (CX-5461) with the mTORC1 inhibitor everolimus more than doubled survival of Eμ-Myc lymphoma-bearing mice.

View Article and Find Full Text PDF

Diamond-Blackfan anaemia (DBA) is a rare congenital disease causing severe anaemia and progressive bone marrow failure. The majority of patients carry mutations in ribosomal proteins, which leads to depletion of erythroid progenitors in the bone marrow. As many as 40% of all DBA patients receive glucocorticoids to alleviate their anaemia.

View Article and Find Full Text PDF

The angiotensin type 1 receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR) to mediate cellular growth, however, the molecular mechanisms involved have not yet been resolved. To address this, we performed a functional siRNA screen of the human kinome in human mammary epithelial cells that demonstrate a robust AT1R-EGFR transactivation. We identified a suite of genes encoding proteins that both positively and negatively regulate AT1R-EGFR transactivation.

View Article and Find Full Text PDF

To influence physiology and pathophysiology, G protein-coupled receptors (GPCRs) have evolved to appropriate additional signalling modalities, such as activation of adjacent membrane receptors. Epidermal growth factor receptors (EGFRs) mediate growth and remodelling actions of GPCRs, although the precise network of gene products and molecular cascades linking GPCRs to EGFRs (termed EGFR transactivation) remains incomplete. In this review, we describe the current view of GPCR-EGFR transactivation, identifying the established models of receptor cross-talk.

View Article and Find Full Text PDF

For over 100 years, pathologists have utilised an increase in size and number of nucleoli, the subnuclear site of ribosome synthesis, as a marker of aggressive tumours. Despite this, the contribution of the nucleolus and ribosomal RNA synthesis to cancer has been largely overlooked. This concept has recently changed with the demonstration that the nucleolus indirectly controls numerous other cellular functions, in particular, the cellular activity of the critical tumour suppressor protein, p53.

View Article and Find Full Text PDF

For cancers to develop, sustain and spread, the appropriation of key homeostatic physiological systems that influence cell growth, migration and death, as well as inflammation and the expansion of vascular networks are required. There is accumulating molecular and in vivo evidence to indicate that the expression and actions of the renin-angiotensin system (RAS) influence malignancy and also predict that RAS inhibitors, which are currently used to treat hypertension and cardiovascular disease, might augment cancer therapies. To appreciate this potential hegemony of the RAS in cancer, an expanded comprehension of the cellular actions of this system is needed, as well as a greater focus on translational and in vivo research.

View Article and Find Full Text PDF

ATRX (alpha thalassemia/mental retardation syndrome X-linked) belongs to the SWI2/SNF2 family of chromatin remodeling proteins. Besides the ATPase/helicase domain at its C terminus, it contains a PHD-like zinc finger at the N terminus. Mutations in the ATRX gene are associated with X-linked mental retardation (XLMR) often accompanied by alpha thalassemia (ATRX syndrome).

View Article and Find Full Text PDF

Serial analysis of gene expression (SAGE), a technique that allows for the simultaneous detection of expression levels of the entire genome without a priori knowledge of gene sequences, was used to examine the transcriptional expression pattern of the Tg2576 mouse model of Alzheimer's disease (AD). Pairwise comparison between the Tg2576 and nontransgenic SAGE libraries identified a number of differentially expressed genes in the Tg2576 SAGE library, some of which were not previously revealed by the microarray studies. Real-time PCR was used to validate a panel of genes selected from the SAGE analysis in the Tg2576 mouse brain, as well as the hippocampus and temporal cortex of sporadic AD and normal age-matched controls.

View Article and Find Full Text PDF

Neuritic abnormalities are a major hallmark of Alzheimer's disease (AD) pathology. Accumulation of beta-amyloid protein (Abeta) in the brain causes changes in neuritic processes in individuals with this disease. In this study, we show that Abeta decreases neurite outgrowth from SH-SY5Y human neuroblastoma cells.

View Article and Find Full Text PDF

Phosphatidylethanolamine binding protein (PEBP) is a multifunctional protein, with proposed roles as the precursor protein of hippocampal cholinergic neurostimulating peptide (HCNP), and as the Raf kinase inhibitor protein (RKIP). Previous studies have demonstrated a decrease in PEBP mRNA in CA1 region of AD hippocampus. The current study demonstrates that PEBP is decreased in the hippocampus of 11 month Tg2576 mice, in the absence of change in mRNA levels compared to non-transgenic littermates.

View Article and Find Full Text PDF

Cholesterol is one of multiple factors, other than familial genetic mutations, that can influence amyloid-beta peptide (Abeta) metabolism and accumulation in Alzheimer disease (AD). The effect of a high-cholesterol diet on amyloid precursor protein (APP) processing in brain has not been thoroughly studied. This study was designed to further investigate the role of cholesterol in the production of Abeta and APP intracellular domain (AICD) in 12-month-old Tg2576 transgenic mice.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: