Publications by authors named "Amc Brown"

Ovarian hormones, including 17β-estradiol, are implicated in numerous physiological processes, including sleep. Beginning at puberty, girls report more sleep complaints than boys, which is maintained throughout the reproductive life stage. Sleep problems are exacerbated during the menopausal transition, evidenced by greater risk for sleep disorders.

View Article and Find Full Text PDF

Human cleft lip with or without cleft palate (CL/P) is a common craniofacial abnormality caused by impaired fusion of the facial prominences. We have previously reported that, in the mouse embryo, epithelial apoptosis mediates fusion at the seam where the prominences coalesce. Here, we show that apoptosis alone is not sufficient to remove the epithelial layers.

View Article and Find Full Text PDF

Recent evidence suggests that mammary cells expressing R-spondin receptor and Wnt pathway regulator Lgr5, regarded as a stem cell marker in multiple tissues, might represent mammary stem cells (MaSCs). Whether L gr5 marks a multipotent subpopulation of Lin-CD24CD49f MaSCs remains controversial. To some extent the differing results reflect different assays used to assess properties of stemness, including lineage tracing in vivo, mammosphere culture, and mammary fat pad transplantation assays.

View Article and Find Full Text PDF

Signaling mechanisms that regulate mammary stem/progenitor cell (MaSC) self-renewal are essential for developmental changes that occur in the mammary gland during pregnancy, lactation, and involution. We observed that equine MaSCs (eMaSCs) maintain their growth potential in culture for an indefinite period, whereas canine MaSCs (cMaSCs) lose their growth potential in long term cultures. We then used this system to investigate the role of microvesicles (MVs) in promoting self-renewal properties.

View Article and Find Full Text PDF

Ribosome biogenesis is essential for cell growth and proliferation and is commonly elevated in cancer. Accordingly, numerous oncogene and tumor suppressor signaling pathways target rRNA synthesis. In breast cancer, non-canonical Wnt signaling by Wnt5a has been reported to antagonize tumor growth.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most frequent pediatric malignant bone tumor that has a high propensity for metastases. Through osteoblast-specific alteration of p53 status, we developed a genetically engineered mouse model of localized and metastatic OS to gain an understanding into the molecular pathogenesis of OS. Microarray analysis of both localized tumors and metastatic tumors identified the downregulation of the naked cuticle homolog 2 (NKD2) gene, a negative regulator of Wnt signaling.

View Article and Find Full Text PDF

The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway.

View Article and Find Full Text PDF

Peptidylarginine deiminase 4 (PAD4) is a Ca(2+)-dependent enzyme that converts arginine and methylarginine residues to citrulline, with histone proteins being among its best-described substrates to date. However, the biological function of this posttranslational modification, either in histones or in nonhistone proteins, is poorly understood. Here, we show that PAD4 recognizes, binds, and citrullinates glycogen synthase kinase-3β (GSK3β), both in vitro and in vivo.

View Article and Find Full Text PDF

Low-density lipoprotein receptor related protein 6 (Lrp6) mutational effects on neurulation were examined using gain (Crooked tail, Lrp6(Cd)) and loss (Lrp6(-)) of function mouse lines. Two features often associated with canonical Wnt signaling, dorsal-ventral patterning and proliferation, were no different from wild-type (WT) in the Lrp6(Cd/Cd) neural tube. Lrp6(-/-) embryos showed reduced proliferation and subtle patterning changes in the neural folds.

View Article and Find Full Text PDF

Previously we reported that Wnt3a-dependent neurite outgrowth in Ewing sarcoma family tumor cell lines was mediated by Frizzled3, Dishevelled (Dvl), and c-Jun N-terminal kinase (Endo, Y., Beauchamp, E., Woods, D.

View Article and Find Full Text PDF

Dishevelled (Dvl) proteins are intracellular effectors of Wnt signaling that have essential roles in both canonical and noncanonical Wnt pathways. It has long been known that Wnts stimulate Dvl phosphorylation, but relatively little is known about its functional significance. We have previously reported that both Wnt3a and Wnt5a induce Dvl2 phosphorylation that is associated with an electrophoretic mobility shift and loss of recognition by monoclonal antibody 10B5.

View Article and Find Full Text PDF

Wnt proteins that signal via the canonical Wnt/β-catenin pathway directly regulate osteoblast differentiation. In contrast, most studies of Wnt-related effects on osteoclasts involve indirect changes. While investigating bone mineral density loss in the setting of human immunodeficiency virus (HIV) infection and its treatment with the protease inhibitor ritonavir (RTV), we observed that RTV decreased nuclear localization of β-catenin, critical to canonical Wnt signaling, in primary human and murine osteoclast precursors.

View Article and Find Full Text PDF

Prioritisation of clients requesting physiotherapy in Victorian community health services has occurred in the absence of a uniform evidence-based prioritisation process. The effect of the varying prioritisation procedures on client outcomes is unknown. This two-part study sought to answer two questions: what are the current prioritisation practices? And what is the evidence for prioritisation? Staff of Victorian community health services offering physiotherapy (n=67) were sent a structured questionnaire regarding their prioritisation practices.

View Article and Find Full Text PDF

Misregulated β-catenin responsive transcription (CRT) has been implicated in the genesis of various malignancies, including colorectal carcinomas, and it is a key therapeutic target in combating various cancers. Despite significant effort, successful clinical implementation of CRT inhibitory therapeutics remains a challenging goal. This is, in part, because of the challenge of identifying inhibitory compounds that specifically modulate the nuclear transcriptional activity of β-catenin while not affecting its cytoskeletal function in stabilizing adherens junctions at the cell membrane.

View Article and Find Full Text PDF

The likely roles of Wnt signaling in regulating mammary stem cell behavior have been much discussed, in part because they may underlie the oncogenic effects of Wnt signaling in mammary tissue. Two recent papers add important data to this field. One tests directly the effects of purified Wnt protein on mouse mammary stem cells in culture and finds a specific increase in the proportion of cells with self-renewing stem cell phenotypes.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a major cause of cancer death worldwide. As in many other types of cancer, aberrant activation of the canonical Wnt/beta-catenin signaling pathway is an important contributor to tumorigenesis. In HCC this frequently occurs through mutations in the N-terminal region of beta-catenin that stabilize the protein and permit an elevated level of constitutive transcriptional activation by beta-catenin/TCF complexes.

View Article and Find Full Text PDF

Low-density lipoprotein receptor-related protein 6 (LRP6) is a component of cell-surface receptors for Wnt proteins and Wnt is known to promote recruitment of Axin by LRP6 thereby inhibiting beta-catenin's degradation. We show here that growth factor receptor-bound protein10 (GRB10), a multi-modular adaptor protein that is known to associate with several transmembrane tyrosine kinase receptors, binds to the intracellular portion of LRP6 and negatively regulates Wnt signaling. GRB10 overexpression suppressed Wnt3a-, and LRP6-induced but not beta-catenin-induced TCF-dependent-reporter activities in HEK293T cells, suggesting that GRB10 functions upstream of beta-catenin.

View Article and Find Full Text PDF

Wnts are lipid-modified secreted glycoproteins that regulate diverse biological processes. We report that Wnt5a, which functions in noncanonical Wnt signaling, has activity on endothelial cells. Wnt5a is endogenously expressed in human primary endothelial cells and is expressed in murine vasculature at several sites in mouse embryos and tissues.

View Article and Find Full Text PDF

The inducible prostaglandin synthase cyclooxygenase-2 (Cox-2) is overexpressed in approximately 40% of human breast cancers and at higher frequencies in preinvasive ductal carcinoma in situ (DCIS). Cox-2 expression is particularly associated with overexpression of human epidermal growth factor receptor 2 (HER2/neu). To definitively interrogate the role of Cox-2 in mammary neoplasia, we have used a genetic approach, crossing Cox-2-deficient mice with a HER2/neu transgenic strain, MMTV/NDL.

View Article and Find Full Text PDF

The canonical Wnt signaling pathway is highly conserved in evolution, widely used throughout animal development, and frequently hyperactive in cancer. Although Wnt signaling has been the subject of extensive genetic analysis in the past, some 200 genes have now been identified as candidate modulators of this pathway by a recent study using high-throughput RNAi screening.

View Article and Find Full Text PDF

Pattern formation and growth must be tightly coupled during embryonic development. In vertebrates, however, little is known of the molecules that serve to link these two processes. Here we show that bone morphogenetic proteins (BMP) coordinate the acquisition of pattern information and the stimulation of proliferation in the embryonic spinal neural tube.

View Article and Find Full Text PDF

Secreted proteins of the Wnt family play widespread roles in the regulation of embryonic development, and aberrant activation of the canonical Wnt/beta-catenin pathway is one of the most frequent signaling abnormalities known in human cancer. While the consequences of Wnt signaling in development are diverse at the cellular level, they are often concerned with cell fate determination. Recent data also indicate that Wnt proteins influence the self-renewal of stem cells in certain tissues.

View Article and Find Full Text PDF

The metabolism of amyloid precursor protein (APP) is central to Alzheimer's disease pathogenesis. Recent data have linked APP and presenilin to the Wnt/wingless signaling pathway. To assess affects of Wnt stimulation on APP isoform expression, we infected PC12 cells and C57MG cells with a retrovirus containing murine Wnt-1.

View Article and Find Full Text PDF