A lack of sustainability in the design of electronic components contributes to the current challenges of electronic waste and material sourcing. Common materials for electronics are prone to environmental, economic, and ethical problems in their sourcing, and at the end of their life often contribute to toxic and nonrecyclable waste. This study investigates the inkjet printing of flexible humidity sensors and includes biosourced and biodegradable materials to improve the sustainability of the process.
View Article and Find Full Text PDFPurpose: The response of human cells to applied electrical signals depends on the cellular health status, because it is influenced by the composition and structure of the main cellular components. Therefore, electrical impedance-based techniques can be considered as sensitive tools to investigate healthy or disease state at cellular level. The goal of this study is to show that different types of in vitro cellular lines, related to different health status, can be differentiated using impedance spectra analysis.
View Article and Find Full Text PDFFungal diseases seriously affect agricultural production and the food industry. Crop protection is usually achieved by synthetic fungicides, therefore more sustainable and innovative technologies are increasingly required. The atmospheric pressure low-temperature plasma is a novel suitable measure.
View Article and Find Full Text PDFNanoscale disassembly of mussel-inspired polydopamine (PDA) in ionic liquids (ILs) was recently shown to induce an electron paramagnetic resonance (EPR)-detectable reorganization of free radical centers in the resulting nanoparticles (NPs) in an IL-controlled manner. Herein, we report electrical impedance spectroscopy (EIS) data showing that PDA NPs produced by suspending samples obtained in Tris and bicarbonate buffer (PDA-T and PDA-C) in different ILs display different redox activity as a result of structural control combined with IL-surface interactions. In particular, susceptibility to oxidation was found to correlate closely with the spin density in an ion pair-tunable fashion in ILs.
View Article and Find Full Text PDFThe present study involved an investigation on the reasoning behind the dependence of the perovskite solar cells photovoltaic efficiencies on the relative position of the undoped spiro-OMeTAD hole-transport material with respect to the perovskite in the device. We adopted impedance spectroscopy to investigate the modification of the carrier transport mechanisms across the spiro-OMeTAD/perovskite interface constituting the active part where the main device processes occur. We investigated two interface structures, referred to as the direct (or regular, n-i-p) and the inverted (p-i-n) configuration.
View Article and Find Full Text PDFAlthough it has long been known that the peculiar electronic-ionic conductor behavior of eumelanin is critically dependent on hydration, the detailed mechanisms by which water-polymer interactions control and affect the conduction properties have remained largely obscure. In this paper, we report a remarkable anisotropy and giant polarization effect in a synthetic eumelanin (TEGMe) chemically functionalized with hydrophilic TEG residues. FT-IR analyses of water sorption isotherms and AC measurements were consistent with a microporous structure binding or hosting mainly isolated water molecules.
View Article and Find Full Text PDFEarly diagnosis of plant virus infections before the disease symptoms appearance may represent a significant benefit in limiting disease spread by a prompt application of appropriate containment steps. We propose a label-free procedure applied on a device structure where the electrical signal transduction is evaluated via impedance spectroscopy techniques. The device consists of a droplet suspension embedding two representative purified plant viruses i.
View Article and Find Full Text PDFIn this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode.
View Article and Find Full Text PDFWe study how partial monolayers of molecular dipoles at semiconductor/metal interfaces can affect electrical transport across these interfaces, using a series of molecules with systematically varying dipole moment, adsorbed on n-GaAs, prior to Au or Pd metal contact deposition, by indirect evaporation or as "ready-made" pads. From analyses of the molecularly modified surfaces, we find that molecular coverage is poorer on low- than on high-doped n-GaAs. Electrical charge transport across the resulting interfaces was studied by current-voltage-temperature, internal photoemission, and capacitance-voltage measurements.
View Article and Find Full Text PDFPhys Rev B Condens Matter
August 1996