Publications by authors named "Ambreen Abbasi"

In our research we explore the world of PACDs, carbon dots synthesized from pamoic acid through a single step pyrolysis method. Our findings reveal that PACDs have capabilities of serving as sensitive and selective sensors in both colorimetric and fluorescent modes. They are particularly effective, at colorimetrically and fluorometrically detecting ferric ions and can also act as fluorometric sensors for pH.

View Article and Find Full Text PDF

A simple one-step solid-state pyrolysis method has been employed to synthesize highly crystalline nitrogen-doped carbon dots using adipic acid and urea as carbon and nitrogen sources. The prepared carbon dots displayed UV emission ( λ = 290 nm and λ = 370 nm) and blue fluorescence emission ( λ = 360 nm and λ = 420 nm). These crystalline nitrogen-doped carbon dots exhibited a quantum yield of 6% with tryptophan as standard at 370 nm emission and 14% with quine sulfate as standard at 420 nm emission.

View Article and Find Full Text PDF

In this study, a simple Benzimidazole based bifunctional chemosensor 4-(2-(3,4-dimethoxyphenyl)-1H-benzo[d]imidazol-6-yl) benzene-1,2-diamine, L was synthesized and characterized. The sensor proved to be selective and sensitive towards detecting banned azo dyes Sudan Dye I, II, and Metanil Yellow via fluorescence turn-off response. The proposed mechanism of fluorescence quenching was the inner filter effect.

View Article and Find Full Text PDF

A facile and green method was adopted to synthesize highly selective gum acacia-mediated silver nanoparticles as dual sensor (fluorescence turn-on and colorimetric) for Hg(ii) and fluorescence turn-off sensor for S and malachite green. The mechanism proposed for a dual response towards Hg(ii) is the redox reaction between Ag(0) and Hg(ii), resulting in the formation of Ag(i) and Hg(0) and electron transfer from gum acacia to Ag(i), which further leads to the formation of an Ag@Hg nanoalloy. The enhanced fluorescence signal was quenched selectively by S owing to the formation of AgS and HgS.

View Article and Find Full Text PDF

The Schiff base ligand, bis(indoline-2-one)triethylenetetramine (L) obtained from condensation of triethylenetetramine and isatin was used to synthesize the complexes of type, [ML]Cl(2) [M=Co(II), Ni(II), Cu(II) and Zn(II)]. L was characterized on the basis of the results of elemental analysis, FT-IR, (1)H and (13)C NMR, mass spectroscopic studies. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility values, molar conductance and various spectroscopic studies.

View Article and Find Full Text PDF

The Schiff base ligand, N,N'-bis-(2-thiophenecarboxaldimine)-3,3'-diaminobenzidine (L) obtained from condensation of 2-thiophenecarboxaldehyde and 3,3'-diaminobenzidine, was used to synthesize the complexes of type, [M2L2]Cl4 [M=Co(II), Ni(II), Cu(II), Cd(II) and Hg(II)]. The newly synthesized ligand (L) was characterized on the basis of the results of elemental analysis, FT-IR, 1H NMR, 13C NMR, mass spectroscopic studies and single crystal X-ray crystallography. The characteristic resonance signals in 1H NMR and 13C NMR spectra indicated the presence of azomethine group as a result of condensation reaction.

View Article and Find Full Text PDF

The Schiff base ligand, N,N'-bis-(2-furancarboxaldimine)-3,3'-diaminobenzidene (L) obtained by condensation of 2-furaldehyde and 3,3'-diaminobenzidene, was used to synthesize the mononuclear complexes of the type, [M(L)](NO3)2 [M=Co(II), Ni(II), Cu(II) and Zn(II)]. The newly synthesized ligand, (L) and its complexes have been characterized on the basis of the results of the elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz, FT-IR, 1H and 13C NMR, mass, UV-vis and EPR. EPR, UV-vis and magnetic moment data revealed a square planar geometry for the complexes with distortion in Cu(II) complex and conductivity data show a 1:2 electrolytic nature of the complexes.

View Article and Find Full Text PDF