Although infection with the human enteropathogen causes self-limited diarrhea in adults, infant populations in endemic areas experience persistent pathogen carriage in the absence of diarrhea. The persistence of this protozoan parasite in infants has been associated with reduced weight gain and linear growth (height-for-age). The mechanisms that support persistent infection and determine the different disease outcomes in the infant host are incompletely understood.
View Article and Find Full Text PDFEarly life stress is known to impair intestinal barrier through induction of intestinal hyperpermeability, low-grade inflammation and microbiota dysbiosis in young adult rodents. Interestingly, those features are also observed in metabolic disorders (obesity and type 2 diabetes) that appear with ageing. Based on the concept of Developmental Origins of Health and Diseases, our study aimed to investigate whether early life stress can trigger metabolic disorders in ageing mice.
View Article and Find Full Text PDFEffector molecules translocated by the Salmonella pathogenicity island (SPI)1-encoded type 3 secretion system (T3SS) critically contribute to the pathogenesis of human Salmonella infection. They facilitate internalization by non-phagocytic enterocytes rendering the intestinal epithelium an entry site for infection. Their function in vivo has remained ill-defined due to the lack of a suitable animal model that allows visualization of intraepithelial Salmonella.
View Article and Find Full Text PDFBackground & Aims: Separation of newborn rats from their mothers induces visceral hypersensitivity and impaired epithelial secretory cell lineages when they are adults. Little is known about the mechanisms by which maternal separation causes visceral hypersensitivity or its relationship with defects in epithelial secretory cell lineages.
Methods: We performed studies with C3H/HeN mice separated from their mothers as newborns and mice genetically engineered (Sox9-vil-cre on C57BL/6 background) to have deficiencies in Paneth cells.