Reactive oxygen species (ROS) are naturally produced compounds that play important roles in cell signaling, gene regulation, and biological defense, including involvement in the oxidative burst that is central to the anti-microbial actions of macrophages. However, these highly reactive, short-lived radical species also stimulate cells to undergo programmed cell death at high concentrations, as well as causing detrimental effects such as oxidation of macromolecules at more moderate levels. Imaging ROS is highly challenging, with many researchers working on the challenge over the past 10-15 years without producing a definitive method.
View Article and Find Full Text PDFBackground: Retinoid signaling is an important regulator of the epidermis and skin appendages. Therefore, synthetic retinoids have been developed for therapeutic use for skin disorders such as psoriasis and acne.
Aims: In previous studies, we showed how the photostable retinoid EC23 induces neuronal differentiation in stem cell-like cell populations, and here, we aim to investigate its ability to influence epidermal and hair follicle growth.
Objective: Divergent therapeutic outcomes on different disease domains have been noted with IL-23 and IL-17A-blockade in PsA. Therefore, elucidating the role of RORγt, the master regulator of type 17 immune responses, is of potential therapeutic interest. To this end, RORγt inhibition was assessed in combined skin, joint and gut inflammation in vivo, using a PsA model.
View Article and Find Full Text PDFWhether resident and recruited myeloid cells may impair or aid healing of acute skin wounds remains a debated question. To begin to address this, we examined the importance of CD11c+ myeloid cells in the early activation of skin wound repair. We find that an absence of CD11c+ cells delays wound closure and epidermal proliferation, likely due to defects in the activation of the IL-23-IL-22 axis that is required for wound healing.
View Article and Find Full Text PDFFluorescent probes are increasingly used as reporter molecules in a wide variety of biophysical experiments, but when designing new compounds it can often be difficult to anticipate the effect that changing chemical structure can have on cellular localisation and fluorescence behaviour. To provide further chemical rationale for probe design, a series of donor-acceptor diphenylacetylene fluorophores with varying lipophilicities and structures were synthesised and analysed in human epidermal cells using a range of cellular imaging techniques. These experiments showed that, within this family, the greatest determinants of cellular localisation were overall lipophilicity and the presence of ionisable groups.
View Article and Find Full Text PDFTyrosine kinase 2 (TYK2) is a member of the JAK kinase family that regulates signal transduction downstream of receptors for the IL-23/IL-12 pathways and type I interferon family, where it pairs with JAK2 or JAK1, respectively. On the basis of human genetic and emerging clinical data, a selective TYK2 inhibitor provides an opportunity to treat autoimmune diseases delivering a potentially differentiated clinical profile compared to currently approved JAK inhibitors. The discovery of an ATP-competitive pyrazolopyrazinyl series of TYK2 inhibitors was accomplished through computational and structurally enabled design starting from a known kinase hinge binding motif.
View Article and Find Full Text PDFRaman spectroscopy has been used to observe uptake, metabolism and response of single-cells to drugs. Photodynamic therapy is based on the use of light, a photosensitiser and oxygen to destroy tumour tissue. Here, we used single-cell Raman spectroscopy to study the uptake and intracellular degradation of a novel photosensitiser with a diphenylacetylene structure, DC473, in live single-cells from colorectal adenocarcinoma cell lines SW480, HT29 and SW620.
View Article and Find Full Text PDFHerein, we disclose a new series of TYK2/ JAK1 inhibitors based upon a 3.1.0 azabicyclic substituted pyrimidine scaffold.
View Article and Find Full Text PDFRetinoids, such as all- trans-retinoic acid (ATRA), are endogenous signaling molecules derived from vitamin A that influence a variety of cellular processes through mediation of transcription events in the cell nucleus. Because of these wide-ranging and powerful biological activities, retinoids have emerged as therapeutic candidates of enormous potential. However, their use has been limited, to date, due to a lack of understanding of the complex and intricate signaling pathways that they control.
View Article and Find Full Text PDFThe development of new imaging tools, molecules and modalities is crucial to understanding biological processes and the localised cellular impact of bioactive compounds. A small molecule photosensitiser, DC473, has been designed to be both highly fluorescent and to exhibit a strong Raman signal in the cell-silent region of the Raman spectrum due to a diphenylacetylene structure. DC473 has been utilised to perform a range of novel tandem fluorescence and Raman (fluoRaman) imaging experiments, enabling a thorough examination of the compound's cellular localisation, exemplified in colorectal cancer cells (SW480).
View Article and Find Full Text PDFCytokine signaling is an important characteristic of autoimmune diseases. Many pro-inflammatory cytokines signal through the Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) pathway. JAK1 is important for the γ-common chain cytokines, interleukin (IL)-6, and type-I interferon (IFN) family, while TYK2 in addition to type-I IFN signaling also plays a role in IL-23 and IL-12 signaling.
View Article and Find Full Text PDFIn skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool.
View Article and Find Full Text PDFLipid based formulations (LBFs) are a promising formulation strategy for many poorly water-soluble drugs and have been shown previously to enhance the oral exposure of CP-532,623, an oral cholesteryl ester transfer protein inhibitor. In the current study, an in vitro lipid digestion model was used to probe the relationship between drug solubilization and supersaturation on in vitro dispersion and digestion of LBF containing long chain (LC) lipids and drug absorption in vivo. After in vitro digestion of LBF based on LC lipids, the proportion of CP-532,623 maintained in the solubilized state in the aqueous phase of the digest was highest in formulations containing Kolliphor RH 40, and in most cases outperformed equivalent formulations based on MC lipids.
View Article and Find Full Text PDFA phytochemical and biological investigation of the endemic Mascarene Aloes (Aloe spp.), including A. tormentorii (Marais) L.
View Article and Find Full Text PDFThrough fragment-based drug design focused on engaging the active site of IRAK4 and leveraging three-dimensional topology in a ligand-efficient manner, a micromolar hit identified from a screen of a Pfizer fragment library was optimized to afford IRAK4 inhibitors with nanomolar potency in cellular assays. The medicinal chemistry effort featured the judicious placement of lipophilicity, informed by co-crystal structures with IRAK4 and optimization of ADME properties to deliver clinical candidate PF-06650833 (compound 40). This compound displays a 5-unit increase in lipophilic efficiency from the fragment hit, excellent kinase selectivity, and pharmacokinetic properties suitable for oral administration.
View Article and Find Full Text PDFObjective: To compare cerebral perfusion and diffusion in survivors of childhood posterior fossa brain tumor with neurologically normal controls and correlate differences with cognitive dysfunction.
Study Design: We analyzed retrospectively arterial spin-labeled cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) in 21 patients with medulloblastoma (MB), 18 patients with pilocytic astrocytoma (PA), and 64 neurologically normal children. We generated ANCOVA models to evaluate treatment effects on the cerebral cortex, thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens, and cerebral white matter at time points an average of 5.
Notch has a well-defined role in controlling cell fate decisions in the embryo and the adult epidermis and immune systems, yet emerging evidence suggests Notch also directs non-cell-autonomous signalling in adult tissues. Here, we show that Notch1 works as a damage response signal. Epidermal Notch induces recruitment of immune cell subsets including RORγ(+) ILC3s into wounded dermis; RORγ(+) ILC3s are potent sources of IL17F in wounds and control immunological and epidermal cell responses.
View Article and Find Full Text PDFThe targeting of drugs to skeletal muscle is an emerging area of research. Driven by the need for new therapies to treat a range of muscle-associated diseases, these strategies aim to provide improved drug exposure at the site of action in skeletal muscle with reduced concentration in other tissues where unwanted side effects could occur. By interacting with muscle-specific cell surface recognition elements, both tissue localization and selective uptake into skeletal muscle cells can be achieved.
View Article and Find Full Text PDFThe present study investigated the use of lipid based drug delivery systems to enhance the oral bioavailability of the CETP inhibitors CP-532,623 and torcetrapib. A series of self-emulsifying lipid based drug delivery systems (SEDDS) were assembled and examined using an in vitro lipid digestion model to evaluate patterns of drug precipitation under simulated intestinal conditions. Drug exposure after oral administration of the same formulations was subsequently assessed in beagle dogs.
View Article and Find Full Text PDFA novel series of nonsteroidal mineralocorticoid receptor (MR) antagonists identified as part of our strategy to follow up on the clinical candidate PF-03882845 (2) is reported. Optimization departed from the previously described pyrazoline 3a and focused on improving the selectivity for MR versus the progesterone receptor (PR) as an approach to avoid potential sex-hormone-related adverse effects and improving biopharmaceutical properties. From this effort, (R)-14c was identified as a potent nonsteroidal MR antagonist (IC50 = 4.
View Article and Find Full Text PDFGiven the barriers to conducting long-term assessment of neurocognitive and psychosocial functioning of those treated in infancy for central nervous system (CNS) tumors, a multi-site feasibility study was conducted. The primary objective was to demonstrate that it is feasible to identify, locate and assess the functioning of children treated on the same protocol 10-years post-treatment. Six sites obtained institutional approval, identified and recruited subjects, and obtained comprehensive neurocognitive and psychosocial data.
View Article and Find Full Text PDF1. Elaborate studies of cholesteryl ester transfer protein (CETP) polymorphisms and genetic deficiency in humans suggest direct links between CETP, high-density lipoprotein cholesterol (HDL-c) levels and coronary heart diseases. The hypothesis that CETP inhibition by small molecule inhibitors raises HDL-c has been validated clinically with structurally-diverse CETP inhibitors such as torcetrapib, anacetrapib, dalcetrapib and evacetrapib.
View Article and Find Full Text PDF