Publications by authors named "Ambika Dattani"

Polyploidy, the phenomenon of having more than one copy of the genome in an organism, is common among haloarchaea. While providing short-term benefits for DNA repair, polyploidy is generally regarded as an "evolutionary trap" that by the notion of the Muller's ratchet will inevitably conclude in the species' decline or even extinction due to a gradual reduction in fitness. In most reported cases of polyploidy in archaea, the genetic state of the organism is considered as homoploidy i.

View Article and Find Full Text PDF

In this chapter, we describe the reverse genetics methodology behind generating a targeted gene deletion or replacement in archaeal species of the genus Haloferax, which are renowned for their ease of manipulation. Individual steps in the method include the design of a gene-targeting vector, its use in transforming Haloferax to yield "pop-in" and "pop-out" clones, and techniques for validating the genetically manipulated strain. The vector carries DNA fragments of 500-1000 bp that flank the gene of interest (or a mutant allele), in addition to the pyrE2 gene for uracil biosynthesis (Bitan-Banin et al.

View Article and Find Full Text PDF

Nitroheterocycles represent an important class of compound used to treat trypanosomiasis. They often function as prodrugs and can undergo type I nitroreductase (NTR1)-mediated activation before promoting their antiparasitic activities although the nature of these downstream effects has yet to be determined. Here, we show that in an NTR1-dependent process, benznidazole promotes DNA damage in the nuclear genome of Trypanosoma brucei, providing the first direct link between activation of this prodrug and a downstream trypanocidal mechanism.

View Article and Find Full Text PDF

The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea.

View Article and Find Full Text PDF

Interstrand crosslinks (ICLs) represent a highly toxic form of DNA damage that can block essential biological processes including DNA replication and transcription. To combat their deleterious effects all eukaryotes have developed cell cycle-dependent repair strategies that co-opt various factors from 'classical' DNA repair pathways to resolve such lesions. Here, we report the first systematic dissection of how ICL repair might operate in the Trypanosoma brucei, the causative agent of African trypanosomiasis, and demonstrated that this diverged eukaryote expresses systems that show some intriguing differences to those mechanisms present in other organisms.

View Article and Find Full Text PDF