Publications by authors named "Ambigapathi Moorthi"

Bone is a flexible and electro active tissue that is vulnerable to various traumatic injuries. The self-healing of damaged bone tissue towards reconstruction is limited due to the lack of proper niche compliances. Nevertheless, the classical grafting techniques like autograft/allograft for bone repair pose challenges like bacterial infections and donor-site morbidity with unsatisfactory outcomes.

View Article and Find Full Text PDF

The bone defects healing are always associated with post implantation infections; hence biomaterials rules significant role for orchestration of defective bone. In this study, we synthesized biocomposite scaffold by combining polycaprolactone (PCL), wollastonite (Ws) and metal ions (Cu) by electrospinning technique. The manufactured scaffolds (PCL/Ws andPCL/Cu-Ws) were subjected to physio-chemical characterization by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier Transform Infra Red Spectroscopy (FTIR) and XRD.

View Article and Find Full Text PDF

Understanding the mechanism behind neuronal regeneration is critical for treating ischemic stroke and traumatic brain injury. The presence of neural stem cells in and around the sub-ventricular zone of human and also in zebrafish is evidenced. In this current study, the neuro-protective potential of nano-formulated hesperetin on injury-induced neurogenesis in zebrafish was assessed.

View Article and Find Full Text PDF

Cardiovascular disease (CVD), leading to myocardial infarction and heart failure, is one of the major causes of death worldwide. The physiological system cannot significantly regenerate the capabilities of a damaged heart. The current treatment involves pharmacological and surgical interventions; however, less invasive and more cost-effective approaches are sought.

View Article and Find Full Text PDF

Bone, a highly dynamic connective tissue, consist of a bioorganic phase comprising osteogenic cells and proteins which lies over an inorganic phase predominantly made of CaPO (biological apatite). Injury to bone can be due to mechanical, metabolic or inflammatory agents also owing pathological conditions like fractures, osteomyelitis, osteolysis or cysts may arise in enameloid, chondroid, cementum, or chondroid bone which forms the intermediate tissues of the body. Bone tissue engineering (BTE) applies bioactive scaffolds, host cells and osteogenic signals for restoring damaged or diseased tissues.

View Article and Find Full Text PDF

Hydrogels are hydrophilic polymers that have a wide range of biomedical applications including bone tissue engineering. In this study we report preparation and characterization of a thermosensitive hydrogel (Zn-CS/β-GP) containing zinc (Zn), chitosan (CS) and beta-glycerophosphate (β-GP) for bone tissue engineering. The prepared hydrogel exhibited a liquid state at room temperature and turned into a gel at body temperature.

View Article and Find Full Text PDF

The current study involves fabrication and characterization of bio-composite scaffolds containing chitosan (CS), nano-hydroxyapatite (nHAp) and Cu-Zn alloy nanoparticles (nCu-Zn) by freeze drying technique. The fabricated composite scaffolds (CS/nHAp and CS/nHAp/nCu-Zn) were characterized by SEM, EDX, XRD and FT-IR studies. The addition of nCu-Zn in the CS/nHAp scaffolds significantly increased swelling, decreased degradation, increased protein adsorption, and increased antibacterial activity.

View Article and Find Full Text PDF

A scaffold harboring the desired features such as biodegradation, biocompatibility, porous structure could serve as template for bone tissue engineering. In the present study, chitosan (CS), nano-scaled silicon dioxide (Si) and zirconia (Zr) were combined by freeze drying technique to fabricate a bio-composite scaffold. The bio-composite scaffold (CS/Si/Zr) was characterized by SEM, XRD and FT-IR studies.

View Article and Find Full Text PDF

In this study, a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver particles (CS/nHAp/nAg) was developed by freeze drying technique, followed by introduction of silver ions in controlled amount through reduction phenomenon by functional groups of chitosan. The scaffolds were characterized using SEM, FT-IR, XRD, swelling, and biodegradation studies. The testing of the prepared scaffolds with Gram-positive and Gram-negative bacterial strains showed antibacterial activity.

View Article and Find Full Text PDF

Bone tissue engineering is an alternative strategy to generate bone utilizing a combination of biomaterials and cells. Biomaterials that mimic the structure and composition of bone tissues at nanoscale are important for the development of bone tissue engineering applications. Natural or biopolymer-based composites containing chitin, chitosan, or collagen have advantages such as biocompatibility, biodegradability that are essential for bone tissue engineering.

View Article and Find Full Text PDF