The aryl hydrocarbon receptor (AhR) mediates the carcinogenicity of a family of environmental contaminants, the most potent being 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increased incidence of lymphoma and leukemia in humans is associated with TCDD exposure. Although AhR activation by TCDD has profound effects on the immune system, precise cellular and molecular mechanisms have yet to be determined.
View Article and Find Full Text PDFActivation of the aryl hydrocarbon receptor (AHR), a basic helix-loop-helix transcription factor, in lymphocytes by the immunosuppressive environmental contaminant 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) has been shown to cause thymic atrophy in every species studied. We set out to identify the specific hemopoietic cellular populations in which the AHR was activated to lead to thymic atrophy and to determine the effect of AHR activation in those cellular populations. Initially, we examined whether AHR activation in intrathymic dendritic cells could mediate TCDD-induced thymic atrophy.
View Article and Find Full Text PDF2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), acting through the aromatic hydrocarbon receptor (AhR), elicits numerous toxicological effects, including immunosuppression. Previous work from our laboratory has suggested that TCDD exposure in mice is associated with altered lymphopoietic development, in particular altered B-cell phenotype in the bone marrow. It remains to be determined which specific hematopoietic populations or subpopulations within the marrow cavity are directly targeted by TCDD.
View Article and Find Full Text PDF