Publications by authors named "Amber Simpson"

Background: Radiomics traditionally focuses on analyzing a single lesion within a patient to extract tumor characteristics, yet this process may overlook inter-lesion heterogeneity, particularly in the multi-metastatic setting. There is currently no established method for combining radiomic features in such settings, leading to diverse approaches with varying strengths and limitations. Our quantitative review aims to illuminate these methodologies, assess their replicability, and guide future research toward establishing best practices, offering insights into the challenges of multi-lesion radiomic analysis across diverse datasets.

View Article and Find Full Text PDF

Metastasis occurs frequently after resection of pancreatic cancer (PaC). In this study, we hypothesized that multi-parametric analysis of pre-metastatic liver biopsies would classify patients according to their metastatic risk, timing and organ site. Liver biopsies obtained during pancreatectomy from 49 patients with localized PaC and 19 control patients with non-cancerous pancreatic lesions were analyzed, combining metabolomic, tissue and single-cell transcriptomics and multiplex imaging approaches.

View Article and Find Full Text PDF

Early diagnosis and accurate prognosis of colorectal cancer is critical for determining optimal treatment plans and maximizing patient outcomes, especially as the disease progresses into liver metastases. Computed tomography (CT) is a frontline tool for this task; however, the preservation of predictive radiomic features is highly dependent on the scanning protocol and reconstruction algorithm. We hypothesized that image reconstruction with a high-frequency kernel could result in a better characterization of liver metastases features via deep neural networks.

View Article and Find Full Text PDF

Oncogenesis and progression of pancreatic ductal adenocarcinoma (PDAC) are driven by complex interactions between the neoplastic component and the tumor microenvironment, which includes immune, stromal, and parenchymal cells. In particular, most PDACs are characterized by a hypovascular and hypoxic environment that alters tumor cell behavior and limits the efficacy of chemotherapy and immunotherapy. Characterization of the spatial features of the vascular niche could advance our understanding of inter- and intratumoral heterogeneity in PDAC.

View Article and Find Full Text PDF

Radiomics, the science of extracting quantifiable data from routine medical images, is a powerful tool that has many potential applications in oncology. The Response Evaluation Criteria in Solid Tumors Working Group (RWG) held a workshop in May 2022, which brought together various stakeholders to discuss the potential role of radiomics in oncology drug development and clinical trials, particularly with respect to response assessment. This article summarizes the results of that workshop, reviewing radiomics for the practicing oncologist and highlighting the work that needs to be done to move forward the incorporation of radiomics into clinical trials.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to evaluate the prevalence of abnormal cardiopulmonary responses to exercise and pathophysiological mechanism(s) underpinning exercise intolerance across the continuum of breast cancer (BC) care from diagnosis to metastatic disease.

Methods: Individual participant data from four randomized trials spanning the BC continuum ([1] prechemotherapy [n = 146], [2] immediately postchemotherapy [n = 48], [3] survivorship [n = 138], and [4] metastatic [n = 47]) were pooled and compared with women at high-risk of BC (BC risk; n = 64). Identical treadmill-based peak cardiopulmonary exercise testing protocols evaluated exercise intolerance (peak oxygen consumption; V̇O2peak) and other resting, submaximal, and peak cardiopulmonary responses.

View Article and Find Full Text PDF

The liver is a common site for the development of metastases in colorectal cancer. Treatment selection for patients with colorectal liver metastases (CRLM) is difficult; although hepatic resection will cure a minority of CRLM patients, recurrence is common. Reliable preoperative prediction of recurrence could therefore be a valuable tool for physicians in selecting the best candidates for hepatic resection in the treatment of CRLM.

View Article and Find Full Text PDF

Accurate brain tumour segmentation is critical for tasks such as surgical planning, diagnosis, and analysis, with magnetic resonance imaging (MRI) being the preferred modality due to its excellent visualisation of brain tissues. However, the wide intensity range of voxel values in MR scans often results in significant overlap between the density distributions of different tumour tissues, leading to reduced contrast and segmentation accuracy. This paper introduces a novel framework based on conditional generative adversarial networks (cGANs) aimed at enhancing the contrast of tumour subregions for both voxel-wise and region-wise segmentation approaches.

View Article and Find Full Text PDF

Background: Multi-detector contrast-enhanced abdominal computed tomography (CT) allows for the accurate detection and classification of traumatic splenic injuries, leading to improved patient management. Their effective use requires rapid study interpretation, which can be a challenge on busy emergency radiology services. A machine learning system has the potential to automate the process, potentially leading to a faster clinical response.

View Article and Find Full Text PDF

Background: In this paper, we add to the scant literature base on learning from failures with a particular focus on understanding educators' shifting mindset in making-centred learning environments.

Aims: The aim of Study 1 was to explore educators' beliefs about failure for learning and instructional practices within their local making-centred learning environments. The aim of Study 2 was to examine how participation in a video-based professional development cycle regarding failure moments in making-centred learning environments might have shifted museum educators' failure pedagogical mindsets.

View Article and Find Full Text PDF

Radiomics is an emerging and exciting field of study involving the extraction of many quantitative features from radiographic images. Positron emission tomography (PET) images are used in cancer diagnosis and staging. Utilizing radiomics on PET images can better quantify the spatial relationships between image voxels and generate more consistent and accurate results for diagnosis, prognosis, treatment, etc.

View Article and Find Full Text PDF

Generating Real World Evidence (RWE) on disease responses from radiological reports is important for understanding cancer treatment effectiveness and developing personalized treatment. A lack of standardization in reporting among radiologists impacts the feasibility of large-scale interpretation of disease response. This study examines the utility of applying natural language processing (NLP) to the large-scale interpretation of disease responses using a standardized oncologic response lexicon (OR-RADS) to facilitate RWE collection.

View Article and Find Full Text PDF

This dataset is composed of cervical spine CT images with annotations related to fractures; it is available at https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/.

View Article and Find Full Text PDF

Background: Recent data suggest that restrictions related to COVID-19 resulted in changes in the prescribing patterns of opioids.

Aims: We sought to analyze Ontario health data for changes in frequencies among new and continuing users for the following opioid prescription characteristics: the type of opioid, the average daily dose, and the prescriber's specialty.

Methods: Utilizing data on the Ontario Health Data Platform, we defined two 149-day windows as "before" and "after" based on the initial COVID-19 provincial lockdown.

View Article and Find Full Text PDF

The liver is a frequent site of benign and malignant, primary and metastatic tumors. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most common primary liver cancers, and colorectal liver metastasis (CRLM) is the most common secondary liver cancer. Although the imaging characteristic of these tumors is central to optimal clinical management, it relies on imaging features that are often non-specific, overlap, and are subject to inter-observer variability.

View Article and Find Full Text PDF
Article Synopsis
  • Machine learning can work well, but it often struggles to make accurate predictions on new data, which is called out-of-sample generalizability.
  • To solve this problem, researchers are using a method called Federated ML that allows computers to share information about how well they're learning without actually sharing the data itself.
  • In a big study with 71 locations around the world, scientists created a model to help detect brain tumors more accurately, showing a significant improvement compared to older methods and hoping to help with rare illnesses and data sharing in healthcare.
View Article and Find Full Text PDF

Background And Purpose: Prognostic assessment of local therapies for colorectal liver metastases (CLM) is essential for guiding management in radiation oncology. Computed tomography (CT) contains liver texture information which may be predictive of metastatic environments. To investigate the feasibility of analyzing CT texture, we sought to build an automated model to predict progression-free survival using CT radiomics and artificial intelligence (AI).

View Article and Find Full Text PDF

Purpose: Natural language processing (NLP) applied to radiology reports can help identify clinically relevant M1 subcategories of patients with colorectal cancer (CRC). The primary purpose was to compare the overall survival (OS) of CRC according to American Joint Committee on Cancer TNM staging and explore an alternative classification. The secondary objective was to estimate the frequency of metastasis for each organ.

View Article and Find Full Text PDF

International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)-a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution.

View Article and Find Full Text PDF

Rapid advances in automated methods for extracting large numbers of quantitative features from medical images have led to tremendous growth of publications reporting on radiomic analyses. Translation of these research studies into clinical practice can be hindered by biases introduced during the design, analysis, or reporting of the studies. Herein, the authors review biases, sources of variability, and pitfalls that frequently arise in radiomic research, with an emphasis on study design and statistical analysis considerations.

View Article and Find Full Text PDF

Background: Liver metastasis (LM) after pancreatic ductal adenocarcinoma (PDAC) resection is common but difficult to predict and has grave prognosis. We combined preoperative clinicopathological variables and quantitative analysis of computed tomography (CT) imaging to predict early LM.

Methods: We retrospectively evaluated patients with PDAC submitted to resection between 2005 and 2014 and identified clinicopathological variables associated with early LM.

View Article and Find Full Text PDF