Publications by authors named "Amber L Hendricks"

In eukaryotes, iron-sulfur clusters are essential cofactors for numerous physiological processes, but these clusters are primarily biosynthesized in mitochondria. Previous studies suggest mitochondrial ABCB7-type exporters are involved in maturation of cytosolic iron-sulfur proteins. However, the molecular mechanism for how the ABCB7-type exporters participate in this process remains elusive.

View Article and Find Full Text PDF

Iron-sulfur clusters are thought to be ancient cofactors that could have played a role in early protometabolic systems. Thus far, redox active, prebiotically plausible iron-sulfur clusters have always contained cysteine ligands to the cluster. However, extant iron-sulfur proteins can be found to exploit other modes of binding, including ligation by histidine residues, as seen with [2Fe-2S] Rieske and MitoNEET proteins.

View Article and Find Full Text PDF

Iron-sulfur clusters are ubiquitous cofactors required for various essential metabolic processes. Conservation of proteins required for their biosynthesis and trafficking allows for simple bacteria to be used as models to aid in exploring these complex pathways in higher organisms. Cyanobacteria are among the most investigated organisms for these processes, as they are unicellular and can survive under photoautotrophic and heterotrophic conditions.

View Article and Find Full Text PDF

G-quadruplex structures are associated with various biological activities, while evidence is essential to confirm the formation of G-quadruplexes inside cells. Most conventional agents that recognize G-quadruplex, including antibodies and small-molecule G-quadruplex ligands, either stabilize the G-quadruplex or prevent G-quadruplex unfolding by helicase, thereby artificially increasing the G-quadruplex levels in cells. Unambiguous study of G-quadruplexes at natural cellular levels requires agents that do not enhance the stability of G-quadruplex.

View Article and Find Full Text PDF

Lipoyl synthase (LIAS) is an iron-sulfur cluster protein and a member of the radical S-adenosylmethionine (SAM) superfamily that catalyzes the final step of lipoic acid biosynthesis. The enzyme contains two [4Fe-4S] centers (reducing and auxiliary clusters) that promote radical formation and sulfur transfer, respectively. Most information concerning LIAS and its mechanism has been determined from prokaryotic enzymes.

View Article and Find Full Text PDF

Mitochondrial BOLA1 is known to form a [2Fe-2S] cluster-bridged heterodimeric complex with mitochondrial monothiol glutaredoxin GLRX5; however, the function of this heterodimeric complex is unclear. Some reports suggest redundant roles for BOLA1 and a related protein, BOLA3, with both involved in the maturation of [4Fe-4S] clusters in a subset of mitochondrial proteins. However, a later report on the structure of BOLA1-GLRX5 heterodimeric complex demonstrated a buried cluster environment and predicted a redox role instead of the cluster trafficking role suggested for the BOLA3-GLRX5 heterodimeric complex.

View Article and Find Full Text PDF
Article Synopsis
  • Iron-sulfur (Fe-S) clusters are crucial for various protein functions, including electron transfer and gene expression regulation, with [4Fe-4S] clusters being particularly important for proper protein activity.
  • While the assembly and trafficking of [2Fe-2S] clusters are well understood, the mechanisms for [4Fe-4S] cluster assembly, especially in specific proteins like aconitase, require further exploration.
  • Using kinetic assays and spectroscopy, the study suggests that a consecutive delivery model for transferring [2Fe-2S] clusters to target proteins is the most probable mechanism, emphasizing the roles of proteins like NFU1.
View Article and Find Full Text PDF