Crude extracts from over 16 species of plants from the family Convolvulaceae were evaluated for phytotoxic activity against Agrostis stolonifera (bentgrass) and Lactuca sativa (lettuce) at 1000 microg/mL. Ethanol extracts of Dicranostyles ampla Ducke were among the most active of those species tested. Systematic bioassay-guided fractionation of the ethanol extract of the aerial parts from this species was performed to identify specifically the phytotoxic compounds.
View Article and Find Full Text PDF5,7-Dihydroxyflavone (chrysin) (1) when fermented with fungal cultures, Aspergillus alliaceous (ATCC 10060), Beauveria bassiana (ATCC 13144) and Absidia glauco (ATCC 22752) gave mainly 4'-hydroxychrysin (4), chrysin 7-O-beta-D-4-O-methylglucopyranoside (5) and chrysin 7-sulfate (6), respectively. Mucore ramannianus (ATCC 9628), however, transformed chrysin into six metabolites: 4'-hydroxy-3'-methoxychrysin (chrysoeriol) (7), 4'-hydroxychrysin (apigenin) (4) 3',4'-dihydroxychrysin (luteolin) (8), 3'-methoxychrysin 4'-O-alpha-D-6-deoxyallopyranoside (9), chrysin 4'-O-alpha-D-6-deoxyallopyranoside (10), and luteolin 3'-sulfate (11). Cultures of A.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
March 2006
Fermentation of 3-hydroxyflavone (1) with Beauveria bassiana (ATCC 13144) yielded 3,4'-dihdroxyflavone (3), flavone 3-O-beta-D-4-O-methylglucopyranoside (4) and two minor metabolites. 7-Hydroxyflavone (2) was transformed by Nocardia species (NRRL 5646) to 7-methoxyflavone (5) whilst Aspergillus alliaceus (ATCC 10060) converted it to 4',7-dihydroxyflavone (6). Flavone 7-O-beta-D-4-O-metylglucopyranoside (7) and 4'-hydroxyflavone 7-O-beta-D-4-O-methylglucopyranoside (8) were the metabolic products of 7-hydroxyflavone (2) when fermented with Beauveria bassiana (ATCC 7159).
View Article and Find Full Text PDFBioassay-guided fractionation of the ethyl acetate extract of Ruta graveolens (common rue) leaves led to the isolation of the furanocoumarins 5-methoxypsoralen (5-MOP), 8-methoxypsoralen (8-MOP), and the quinolone alkaloid graveoline as phytotoxic constituents. Graveoline and 8-MOP substantially inhibited growth of Lactuca sativa (lettuce) seedlings and reduced chlorophyll content at 100 microM; this effect was not due to a direct effect on chlorophyll synthesis. Radical growth of L.
View Article and Find Full Text PDFBioassay-directed isolation of antifungal compounds from an ethyl acetate extract of Ruta graveolens leaves yielded two furanocoumarins, one quinoline alkaloid, and four quinolone alkaloids, including a novel compound, 1-methyl-2-[6'-(3' ',4' '-methylenedioxyphenyl)hexyl]-4-quinolone. The (1)H and (13)C NMR assignments of the new compound are reported. Antifungal activities of the isolated compounds, together with 7-hydroxycoumarin, 4-hydroxycoumarin, and 7-methoxycoumarin, which are known to occur in Rutaceae species, were evaluated by bioautography and microbioassay.
View Article and Find Full Text PDF