Autophagy is a catabolic cellular process in which unwanted proteins and organelles are degraded by lysosomes. It is characterized by the formation of the double-membrane autophagosome decorated with LC3B, a protein that mediates autophagosomal fusion with lysosomes. The cysteine protease ATG4b acts at two stages in the life cycle of LC3B.
View Article and Find Full Text PDFExposure to environmental contaminants and consumption of a high, saturated fatty diet has been demonstrated to promote precursors for metabolic syndrome (hyperglycemia, hyperinsulinemia, and hypertriglyceridemia). The purpose of this study was to determine if exposure to the most prevalent environmental persistent organic pollutants (POPs) would act as causative agents to promote metabolic syndrome independent of dietary intake. We hypothesized that POPs will activate the advanced glycated end-product (AGE)-and receptor for AGE (RAGE) signaling cascade to promote downstream signaling modulators of cardiovascular remodeling and oxidative stress in the heart.
View Article and Find Full Text PDFBackground Aims: After a myocardial infarction (MI) atherosclerosis is accelerated leading to destabilization of the atherosclerotic plaque. mesenchymal stromal cells are a promising therapeutic option for atherosclerosis. Previously, we demonstrated a novel stem cell delivery technique, with adipose stem cells coupled to microbubbles (i.
View Article and Find Full Text PDFAGE/RAGE signaling has been a well-studied cascade in many different disease states, particularly diabetes. Due to the complex nature of the receptor and multiple intersecting pathways, the AGE/RAGE signaling mechanism is still not well understood. The purpose of this review is to highlight key areas of AGE/RAGE mediated vascular calcification as a complication of diabetes.
View Article and Find Full Text PDF