The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data.
View Article and Find Full Text PDFToxicogenomics (TGx) is employed frequently to investigate underlying molecular mechanisms of the compound of interest and, thus, has become an aid to mode of action determination. However, the results and interpretation of a TGx dataset are influenced by the experimental design and methods of analysis employed. This article describes an evaluation and reanalysis, by two independent laboratories, of previously published TGx mouse liver microarray data for a triazole fungicide, propiconazole (PPZ), and the anticonvulsant drug phenobarbital (PB).
View Article and Find Full Text PDFToxicogenomics is the application of toxicology, genetics, molecular biology and environmental health to describe the response of organisms to environmental stimuli. The field of toxicogenomics has developed over the past 15 years mainly due to advances in toxicology, molecular genetics and cell biology. Its prospective use to resolve crucial data gaps and data inconsistencies could improve risk assessment by providing additional data to increase the understanding of mechanisms and modes of action (MOA) and enhance the reliability of dose-response extrapolation.
View Article and Find Full Text PDFSyst Biol Reprod Med
December 2009
Environmental chemicals that alter steroid production could interfere with male reproductive development and function. Three agricultural antifungal triazoles that are known to modulate expression of cytochrome P450 (CYP) genes and enzymatic activities were tested for effects on steroidogenesis using rat in vivo (triadimefon), rat in vitro (myclobutanil and triadimefon), and human in vitro (myclobutanil, propiconazole, and triadimefon) model systems. Hormone production was measured in testis organ cultures from untreated adult and neonatal rats, following in vitro exposure to 1, 10, or 100 muM of myclobutanil or triadimefon.
View Article and Find Full Text PDFThe mode of action for the reproductive toxicity of some triazole antifungals has been characterized as an increase in serum testosterone and hepatic response, and reduced insemination and fertility indices. In order to refine our mechanistic understanding of these potential modes of action, gene expression profiling was conducted on liver and testis from male Wistar Han IGS rats exposed to myclobutanil (500, 2000 ppm), propiconazole (500, 2500 ppm), or triadimefon (500, 1800 ppm) from gestation day six to postnatal day 92. Gene expression profiles indicated that all three triazoles significantly perturbed the fatty acid, steroid, and xenobiotic metabolism pathways in the male rat liver.
View Article and Find Full Text PDFToxicol Appl Pharmacol
July 2009
The triazole antifungals myclobutanil, propiconazole and triadimefon cause varying degrees of hepatic toxicity and disrupt steroid hormone homeostasis in rodent in vivo models. To identify biological pathways consistently modulated across multiple timepoints and various study designs, gene expression profiling was conducted on rat livers from three separate studies with triazole treatment groups ranging from 6 h after a single oral gavage exposure, to prenatal to adult exposures via feed. To explore conservation of responses across species, gene expression from the rat liver studies were compared to in vitro data from rat and human primary hepatocytes exposed to the triazoles.
View Article and Find Full Text PDFTriazole fungicides associated with a range of reported male reproductive effects in experimental animals were selected to assess potential toxic modes of action. Wistar Han rats were fed myclobutanil (M: 100, 500, or 2000 ppm), propiconazole (P: 100, 500, or 2500 ppm), or triadimefon (T: 100, 500, or 1800 ppm) from gestation day 6 to postnatal day (PND) 120. One male per litter was necropsied on PND1, 22, 50, or 92.
View Article and Find Full Text PDFThree triazole fungicides were evaluated for effects on female rat reproductive development. Rats were exposed via feed to propiconazole (P) (100, 500, or 2500 ppm), myclobutanil (M) (100, 500, or 2000 ppm), or triadimefon (T) (100, 500, or 1800 ppm) from gestation day 6 to postnatal day (PND) 98. Body weight (BW) and anogenital distance (AGD) at PND 0, age and BW at vaginal opening (VO), estrous cyclicity, and body and organ weight at necropsy were measured.
View Article and Find Full Text PDFFour triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and hypotheses on potential mechanisms of action for this class of chemicals. Adult male CD-1 mice were exposed daily for 14 days to fluconazole, myclobutanil, propiconazole, or triadimefon at three dose levels by oral gavage.
View Article and Find Full Text PDFFour triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected for hormone measurements, and liver and testes were collected for histology, enzyme biochemistry, or gene expression profiling.
View Article and Find Full Text PDFThis study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods were used as measures of Cyp enzyme activities. Western analyses identified specific Cyp isoforms.
View Article and Find Full Text PDFReproductive toxicogenomic studies generate large amounts of toxicological and genomic data. On the toxicology side, a substantial quantity of data accumulates from conventional endpoints such as histology, reproductive physiology and biochemistry. The largest source of genomics data is DNA microarrays, which generate enormous amounts of information in the course of profiling gene expression.
View Article and Find Full Text PDFPropiconazole is a N-substituted triazole used as a fungicide on fruits, grains, seeds, hardwoods, and conifers. In the present study, propiconazole was examined for its effects on the expression of hepatic cytochrome P450 genes and on the activities of P450 enzymes in male Sprague-Dawley rats and male CD-1 mice. Rats and mice were administered propiconazole by gavage daily for 14 days at doses of 10, 75, and 150 mg/kg body weight/day.
View Article and Find Full Text PDF