Publications by authors named "Amber C Nobles"

Various dietary supplements have been shown to extend the life span of , including several that promote autophagy, such as rapamycin and spermidine. The goal of the study presented here was to test numerous additional potential anti-aging supplements, primarily inhibitors of the target of rapamycin (TOR) and/or phosphatidylinositol 3-kinase (PI3K). Using a single, comparatively long-lived test strain, screening was performed in male flies supplemented either throughout adulthood or, in a few cases, beginning in middle or late adult life, with concentrations spanning 4-6 orders of magnitude in most cases.

View Article and Find Full Text PDF

Skeletal muscle has recently arisen as a regulator of central nervous system (CNS) function and aging, secreting bioactive molecules known as myokines with metabolism-modifying functions in targeted tissues, including the CNS. Here, we report the generation of a transgenic mouse with enhanced skeletal muscle lysosomal and mitochondrial function via targeted overexpression of transcription factor E-B (TFEB). We discovered that the resulting geroprotective effects in skeletal muscle reduce neuroinflammation and the accumulation of tau-associated pathological hallmarks in a mouse model of tauopathy.

View Article and Find Full Text PDF

Genetic studies indicate that aging is modulated by a great number of genetic pathways. We have used Drosophila longevity and stress assays to test a multipath intervention strategy. To carry out this strategy, we supplemented the flies with herbal extracts (SC100) that are predicted to modulate the expression of many genes involved in aging and stress resistance, such as mTOR, NOS, NF-KappaB, and VEGF.

View Article and Find Full Text PDF

The hypothesis tested in this study was that single-gene mutations found previously to extend the life span of Drosophila melanogaster could do so consistently in both long-lived y w and standard w (1118) genetic backgrounds. GAL4 drivers were used to express upstream activation sequence (UAS)-responder transgenes globally or in the nervous system. Transgenes associated with oxidative damage prevention (UAS-hSOD1 and UAS-GCLc) or removal (EP-UAS-Atg8a and UAS-dTOR (FRB) ) failed to increase mean life spans in any expression pattern in either genetic background.

View Article and Find Full Text PDF