The integration of Nurse Practitioners (NPs) and Physician Assistants (PAs) in the Medical Intensive Care Unit (MICU) is becoming increasingly vital due to the rising number of critically ill patients and the shortage of board-certified intensivists. Successful recruitment and utilization of NPs and PAs into the MICU setting require a unique understanding of potential variations of the scope of practice based on state law and educational backgrounds, as well as the implementation of best practices around training and leadership support. The purpose of this article is to review the best strategies for creating a MICU team with NPs and PAs.
View Article and Find Full Text PDFFree Radic Biol Med
July 2015
Excess circulating iron is stored in the liver, and requires reduction of non-Tf-bound iron (NTBI) and transferrin (Tf) iron at the plasma membrane and endosomes, respectively, by ferrireductase (FR) proteins for transport across biological membranes through divalent metal transporters. Here, we report that prion protein (PrP(C)), a ubiquitously expressed glycoprotein most abundant on neuronal cells, functions as a FR partner for divalent-metal transporter-1 (DMT1) and ZIP14. Thus, absence of PrP(C) in PrP-knock-out (PrP(-/-)) mice resulted in markedly reduced liver iron stores, a deficiency that was not corrected by chronic or acute administration of iron by the oral or intraperitoneal routes.
View Article and Find Full Text PDFBrain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrP(C)) from its normal conformation to an aggregated, PrP-scrapie (PrP(Sc)) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrP(C) in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrP(C) is lacking.
View Article and Find Full Text PDFSignificance: Intracellular and extracellular aggregation of a specific protein or protein fragments is the principal pathological event in several neurodegenerative conditions. We describe two such conditions: sporadic Creutzfeldt-Jakob disease (sCJD), a rare but potentially infectious and invariably fatal human prion disorder, and Parkinson's disease (PD), a common neurodegenerative condition second only to Alzheimer's disease in prevalence. In sCJD, a cell surface glycoprotein known as the prion protein (PrP(C)) undergoes a conformational change to PrP-scrapie, a pathogenic and infectious isoform that accumulates in the brain parenchyma as insoluble aggregates.
View Article and Find Full Text PDFIron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis.
View Article and Find Full Text PDF