Publications by authors named "Amber B Rico"

Poxvirus proteins remodel signaling throughout the cell by targeting host enzymes for inhibition and redirection. Recently, it was discovered that early in infection the vaccinia virus (VACV) B12 pseudokinase copurifies with the cellular kinase VRK1, a proviral factor, in the nucleus. Although the formation of this complex correlates with inhibition of cytoplasmic VACV DNA replication and likely has other downstream signaling consequences, the molecular mechanisms involved are poorly understood.

View Article and Find Full Text PDF

The poxviral B1 and B12 proteins are a homologous kinase-pseudokinase pair, which modulates a shared host pathway governing viral DNA replication and antiviral defense. While the molecular mechanisms involved are incompletely understood, B1 and B12 seem to intersect with signaling processes mediated by their cellular homologs termed the vaccinia-related kinases (VRKs). In this study, we expand upon our previous characterization of the B1-B12 signaling axis to gain insights into B12 function.

View Article and Find Full Text PDF

Comparative examination of viral and host protein homologs reveals novel mechanisms governing downstream signaling effectors of both cellular and viral origin. The vaccinia virus B1 protein kinase is involved in promoting multiple facets of the virus life cycle and is a homolog of three conserved cellular enzymes called vaccinia virus-related kinases (VRKs). Recent evidence indicates that B1 and VRK2 mediate a common pathway that is largely uncharacterized but appears independent of previous VRK substrates.

View Article and Find Full Text PDF

This protocol describes how to couple two techniques, the generation of complementing cells lines and production of viral deletion mutants, to rapidly construct novel tools for poxvirus analysis. Specifically, the production and utilization of a complementing cell line expressing a poxvirus gene of interest are critical for the generation of poxvirus mutants in which essential genes are disrupted. Complementing cells are also valuable for the characterization of vaccinia genes in the absence of infection.

View Article and Find Full Text PDF

Poxviruses employ sophisticated, but incompletely understood, signaling pathways that engage cellular defense mechanisms and simultaneously ensure viral factors are modulated properly. For example, the vaccinia B1 protein kinase plays a vital role in inactivating the cellular antiviral factor BAF, and likely orchestrates other pathways as well. In this study, we utilized experimental evolution of a B1 deletion virus to perform an unbiased search for suppressor mutations and identify novel pathways involving B1.

View Article and Find Full Text PDF

The vaccinia virus B1 kinase is highly conserved among poxviruses and is essential for the viral life cycle. B1 exhibits a remarkable degree of similarity to vaccinia virus-related kinases (VRKs), a family of cellular kinases, suggesting that the viral enzyme has evolved to mimic VRK activity. Indeed, B1 and VRKs have been demonstrated to target a shared substrate, the DNA binding protein BAF, elucidating a signaling pathway important for both mitosis and the antiviral response.

View Article and Find Full Text PDF

Eastern, Venezuelan and western equine encephalitis viruses (EEEV, VEEV, and WEEV) are mosquito-borne viruses that cause substantial disease in humans and other vertebrates. Vaccines are limited and current treatment options have not proven successful. In this report, we vaccinated outbred mice with lipid-antigen-nucleic acid-complexes (LANACs) containing VEEV E1+WEEV E1 antigen and characterized protective efficacy against lethal EEEV, VEEV, and WEEV challenge.

View Article and Find Full Text PDF

Unlabelled: Venezuelan and western equine encephalitis viruses (VEEV and WEEV; Alphavirus; Togaviridae) are mosquito-borne pathogens causing central nervous system (CNS) disease in humans and equids. Adult CD-1 mice also develop CNS disease after infection with VEEV and WEEV. Adult CD-1 mice infected by the intranasal (i.

View Article and Find Full Text PDF

Alphaviruses are mosquito-borne viruses that cause significant disease in animals and humans. Western equine encephalitis virus (WEEV) and eastern equine encephalitis virus (EEEV), two New World alphaviruses, can cause fatal encephalitis, and EEEV is a select agent of concern in biodefense. However, we have no antiviral therapies against alphaviral disease, and current vaccine strategies target only a single alphavirus species.

View Article and Find Full Text PDF