Using a simple copper catalyst, the alkylation of nitroalkanes with α-bromocarbonyls is now possible. This method provides a general, functional group tolerant route to β-nitrocarbonyl compounds, including nitro amides, esters, ketones, and aldehydes. The highly sterically dense, functional group rich products from these reactions can be readily elaborated into a range of complex nitrogen-containing molecules, including highly substituted β-amino acids.
View Article and Find Full Text PDFControlling the molecular topology of electrode-catalyst interfaces is a critical factor in engineering devices with specific electron transport kinetics and catalytic efficiencies. As such, the development of rational methods for the modular construction of tailorable electrode surfaces with robust molecular wires (MWs) exhibiting well-defined molecular topologies, conductivities and morphologies is critical to the evolution and implementation of electrochemical arrays for sensing and catalysis. In response to this need, we have established modular on-surface Sonogashira and Glaser cross-coupling processes to synthetically install arrays of ferrocene-capped MWs onto electrochemically functionalized surfaces.
View Article and Find Full Text PDFThe C-alkylation of nitroalkanes under mild conditions has been a significant challenge in organic synthesis for more than a century. Herein we report a simple Cu(I) catalyst, generated in situ, that is highly effective for C-benzylation of nitroalkanes using abundant benzyl bromides and related heteroaromatic compounds. This process, which we believe proceeds via a thermal redox mechanism, allows access to a variety of complex nitroalkanes under mild reaction conditions and represents the first step toward the development of a general catalytic system for the alkylation of nitroalkanes.
View Article and Find Full Text PDF