Publications by authors named "Ambar B RanguMagar"

Injectable hydrogels offer numerous advantages in various areas, which include tissue engineering and drug delivery because of their unique properties such as tunability, excellent carrier properties, and biocompatibility. These hydrogels can be administered with minimal invasiveness. In this study, we synthesized an injectable hydrogel by rehydrating lyophilized mixtures of guar adamantane (Guar-ADI) and poly-β-cyclodextrin (p-βCD) in a solution of phosphate-buffered saline (PBS) maintained at pH 7.

View Article and Find Full Text PDF

Transplantation of differentiated and fully functional neurons may be a better therapeutic option for the cure of neurodegenerative disorders and brain injuries than direct grafting of neural stem cells (NSCs) that are potentially tumorigenic. However, the differentiation of NSCs into a large population of neurons has been a challenge. Nanomaterials have been widely used as substrates to manipulate cell behavior due to their nano-size, excellent physicochemical properties, ease of synthesis, and versatility in surface functionalization.

View Article and Find Full Text PDF

Developing more efficient routes to achieve C-N bond coupling is of great importance to industries ranging from products in pharmaceuticals and fertilizers to biomedical technologies and next-generation electroactive materials. Over the past decade, improvements in catalyst design have moved synthesis away from expensive metals to newer inexpensive C-N cross-coupling approaches direct amine alkylation. For the first time, we report the use of an amide-based nickel pincer catalyst (1) for direct alkylation of amines activation of sp C-H bonds.

View Article and Find Full Text PDF

Nitrophenols (NPs) and related derivatives are industrially important chemicals, used notably to synthesize pharmaceuticals, insecticides, herbicides, and pesticides. However, NPs and their metabolites are highly toxic and mutagenic. They pose a serious threat to human health and ecosystem.

View Article and Find Full Text PDF

Supercapacitors are beneficial as energy storage devices and can obtain high capacitance values greater than conventional capacitors and high power densities compared to batteries. However, in order to improve upon the overall cost, energy density, and charge-discharge rates, the electrode material of supercapacitors needs to be fine-tuned with an inexpensive, high conducting source. We prepared a Co(III) complex and polypyrrole (PPy) composite thin films (CoN-PPy) that was electrochemically deposited on the surface of a glassy carbon working electrode.

View Article and Find Full Text PDF

In this study, an injectable thermoresponsive hydroxypropyl guar--poly(-vinylcaprolactam) (HPG--PNVCL) copolymer was synthesized by graft polymerization. The reaction parameters such as temperature, time, monomer, and initiator concentrations were varied. In addition, the HPG--PNVCL copolymer was modified with nano-hydroxyapatite (n-HA) by in situ covalent cross-linking using divinyl sulfone (DVS) cross-linker to obtain HPG--PNVCL/n-HA/DVS composite material.

View Article and Find Full Text PDF

Biocompatible bone implants composed of natural materials are highly desirable in orthopedic reconstruction procedures. In this study, novel and ecofriendly bionanocomposite hydrogels were synthesized using a blend of hydroxypropyl guar (HPG), poly vinyl alcohol (PVA), and nano-hydroxyapatite (n-HA) under freeze-thaw and mild reaction conditions. The hydrogel materials were characterized using various techniques.

View Article and Find Full Text PDF

Manganese (Mn) complexes are widely studied because of their important catalytic properties in synthetic and biochemical reactions. A Mn (III) complex of an amidoamine ligand was synthesized using a tetradentate amidoamine ligand. In this study, the Mn (III) complex was evaluated for its biological activity by measuring its cytotoxicity in human breast adenocarcinoma cell line (MCF-7).

View Article and Find Full Text PDF