Publications by authors named "Amaya Garcia-Costas"

We report the discovery and genome sequence of bacteriophage Aoka, an actinobacteriophage isolated from a soil sample in Pueblo, Colorado using , B2880-SEA. Its genome length is 36,744 base pairs with 54 protein-coding genes. Based on gene content similarity to other actinobacteriophages, Aoka is assigned to cluster FO.

View Article and Find Full Text PDF

We report the discovery and genome sequences of three FH cluster actinophage infecting Arthrobacter globiformis B2979. Lilmac1015 and Klevey were isolated from riverbank soil and Prairie from soil collected below a tree. Their respective genome lengths are 49,978, 50,075, and 49,392 bp, with 80, 81, and 78 predicted protein-coding genes.

View Article and Find Full Text PDF

Biological nitrogen fixation requires large amounts of energy in the form of ATP and low potential electrons to overcome the high activation barrier for cleavage of the dinitrogen triple bond. The model aerobic nitrogen-fixing bacteria, Azotobacter vinelandii, generates low potential electrons in the form of reduced ferredoxin (Fd) and flavodoxin (Fld) using two distinct mechanisms via the enzyme complexes Rnf and Fix. Both Rnf and Fix are expressed during nitrogen fixation, but deleting either or genes has little effect on diazotrophic growth.

View Article and Find Full Text PDF

We report the discovery and genome sequence of phage Adumb2043, a siphovirus infecting Arthrobacter globiformis, B2979-SEA. Adumb2043 was isolated from soil collected in Colorado Springs, Colorado. The genome has a length of 43,100 bp and contains 68 predicted protein-coding genes and no tRNA genes.

View Article and Find Full Text PDF

is the first and until now the sole genus in the phylum (formerly ) whose members perform chlorophyll-dependent phototrophy (i.e., chlorophototrophy).

View Article and Find Full Text PDF

The extreme academic and social disruption caused by COVID-19 in the spring and summer of 2020 led to the loss of many student internships. We report here our creation of a novel internship for students majoring in the biological sciences. Student interns worked together to systematically categorize multiple episodes of This Week in Microbiology (TWiM).

View Article and Find Full Text PDF

Legumes obtain nitrogen from air through rhizobia residing in root nodules. Some species of rhizobia can colonize cereals but do not fix nitrogen on them. Disabling native regulation can turn on nitrogenase expression, even in the presence of nitrogenous fertilizer and low oxygen, but continuous nitrogenase production confers an energy burden.

View Article and Find Full Text PDF

In this study we present evidence for a novel, thermophilic bacterium with dissimilatory sulfur metabolism, tentatively named " Thermonerobacter thiotrophicus," which is affiliated with the and which we predict to be a sulfate reducer. Dissimilatory sulfate reduction (DSR) is an important and ancient metabolic process for energy conservation with global importance for geochemical sulfur and carbon cycling. Characterized sulfate-reducing microorganisms (SRM) are found in a limited number of bacterial and archaeal phyla.

View Article and Find Full Text PDF

Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase.

View Article and Find Full Text PDF

The biological reduction of dinitrogen (N) to ammonia (NH) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E = -320 mV) coupled to reduction of flavodoxin semiquinone (E = -460 mV) and reduction of coenzyme Q (E = 10 mV).

View Article and Find Full Text PDF

Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting.

View Article and Find Full Text PDF

Engineering cereal crops that are self-supported by nitrogen fixation has been a dream since the 1970s when nitrogenase was transferred from Klebsiella pneumoniae to Escherichia coli. A renewed interest in this area has generated several new approaches with the common aim of transferring nitrogen fixation to cereal crops. Advances in synthetic biology have afforded the tools to rationally engineer microorganisms with traits of interest.

View Article and Find Full Text PDF

"Candidatus Chloracidobacterium thermophilum" is a recently discovered chlorophototroph from the bacterial phylum Acidobacteria, which synthesizes bacteriochlorophyll (BChl) c and chlorosomes like members of the green sulfur bacteria (GSB) and the green filamentous anoxygenic phototrophs (FAPs). The pigments (BChl c homologs and carotenoids), quinones, lipids, and hopanoids of cells and chlorosomes of this new chlorophototroph were characterized in this study. "Ca.

View Article and Find Full Text PDF

Chlorosomes are sac-like, light-harvesting organelles that characteristically contain very large numbers of bacteriochlorophyll (BChl) c, d, or e molecules. These antenna structures occur in chlorophototrophs belonging to some members of the Chlorobi and Chloroflexi phyla and are also found in a recently discovered member of the phylum Acidobacteria, "Candidatus Chloracidobacterium thermophilum." "Ca.

View Article and Find Full Text PDF

Candidatus Chloracidobacterium thermophilum, which naturally inhabits microbial mats of alkaline siliceous hot springs in Yellowstone National Park, is the only known chlorophototroph in the phylum Acidobacteria. The Ca. C.

View Article and Find Full Text PDF

The genome of the green sulfur bacterium Chlorobaculum (Cba.) tepidum, a strictly anaerobic photolithoautotroph, is predicted to encode more than ten genes whose products are potentially involved in protection from reactive oxygen species and an oxidative stress response. The encoded proteins include cytochrome bd quinol oxidase, NADH oxidase, rubredoxin oxygen oxidoreductase, several thiol peroxidases, alkyl hydroperoxide reductase, superoxide dismutase, methionine sulfoxide reductase, and rubrerythrin.

View Article and Find Full Text PDF