Background: Alpha1-antitrypsin deficiency (AATD) is an under-diagnosed hereditary disorder characterized by reduced serum levels of alpha1-antitrypsin (AAT) and increased risk to develop lung and liver diseases at an early age. AAT is encoded by the highly polymorphic SERPINA1 gene. The most common deficiency alleles are S and Z, but more than 150 rare variants lead to low levels of the protein.
View Article and Find Full Text PDFOur study purpose was to compare a disease-related polygenic profile that combined a total of 62 genetic variants among (i) people reaching exceptional longevity, i.e., centenarians (n = 54, 100-108 years, 48 women) and (ii) ethnically matched healthy controls (n = 87, 19-43 years, 47 women).
View Article and Find Full Text PDFUsing the model originally developed by Williams and Folland (J Physiol 586: 113-121, 2008), we determined 1) a "total genotype score" (TGS, from the accumulated combination of the 6 polymorphisms, with a maximum value of "100" for the theoretically optimal polygenic score) in a group of elite power athletes, endurance athletes, and nonathletic controls, and 2) the probability for the occurrence of Spanish individuals with the "perfect" power-oriented profile (i.e., TGS = 100).
View Article and Find Full Text PDFWe compared a polygenic profile that combined 33 disease risk-related mutations and polymorphisms among nonathletic healthy control subjects and elite endurance athletes. The study sample comprised 100 healthy Spanish male nonathletic (sedentary) control subjects and 100 male elite endurance athletes. We analyzed 33 disease risk-related mutations and polymorphisms.
View Article and Find Full Text PDFThe -174 G/C polymorphism [rs1800795] of the IL6 gene is a candidate to explain individual variations in health and exercise related phenotypes. We compared -174 G/C genotypic and allelic frequencies in three groups of men of the same Caucasian (Spanish) descent: elite endurance athletes (cyclists, runners; n=100); elite power athletes (jumpers, throwers, sprinters; n=53) and non-athletic controls (n=100). The frequency of the GG genotype (P=0.
View Article and Find Full Text PDFThe NOS3 gene is a candidate to explain individual variations in health and exercise related phenotypes. We compared genotypic and allelic frequencies of the NOS3 -786 T/C polymorphism (rs2070744) in three groups of men of the same Caucasian (Spanish) descent: (i) elite endurance athletes (cyclists, runners; N = 100); (ii) elite power athletes (jumpers, throwers, sprinters; N = 53) and (iii) non-athletic controls (N = 100). The frequency of the TT genotype was significantly higher in power athletes (57%) than in the endurance (33%, P = 0.
View Article and Find Full Text PDFIn this study, allele and genotype frequencies of the ADRB1 Arg389Gly (rs1801253), ADRB2 Gly16Arg (rs1042713) and Gln27Glu (rs1042714), and ADRB3 Trp64Arg (rs4994) variations were compared in the following three groups of Spanish (Caucasian) men: (1) world-class endurance athletes (E; runners and cyclists, n=100), (2) elite power athletes (P; sprinters, jumpers and throwers, n=53) and (3) non-athletic controls (C; n=100). No significant differences were observed in genotype and allele distributions among the study groups except for the ADRB3 Trp64Arg polymorphism in E versus C (27% vs 8% of carriers of the Arg allele in E and C, p<0.001; frequency of the minor Arg (C) allele of 14% vs 4% in E and C, p=0.
View Article and Find Full Text PDFIn this study, genotype frequencies of several polymorphisms that are candidates to influence sports performance (ie, ACTN3 R577X, ACE ID, PPARGC1A Gly482Ser, AMPD1 C34T, CKMM 985bp/1170bp and GDF8 (myostatin) K153R) were compared in 123 nonathletic controls, 50 professional cyclists, 52 Olympic-class runners and 39 world-class rowers (medallists in world championships, lightweight category). Significant differences in genotype distributions among the groups were not found except for the ACE gene, that is, lower (p<0.05) proportion of II in rowers (10.
View Article and Find Full Text PDFCellular biomarkers of exposure and biological effects were measured in hepatocytes of turbot exposed to either Cd, Cu or Zn at concentrations of 1 and 10 mg/l seawater for 7 days and after depuration for 14 days. Metal content in hepatocyte lysosomes was determined by image analysis after autometallography (AMG) as volume density of autometallographed black silver deposits (Vv(BSD)). Metallothionein (MT) levels were quantified on liver sections by microdensitometry after immunohistochemical staining with a polyclonal anti cod-MT antibody (MT-OD), and in the cytosolic fraction of hepatocytes by difference pulse polarography (MT-DPP).
View Article and Find Full Text PDF