Publications by authors named "Amay S Redkar"

Drug resistance in cancer poses a serious challenge in finding an effective remedy for cancer patients, because of the multitude of contributing factors influencing this complex phenomenon. One way to counter this problem is using a more targeted and dose-limiting approach for drug delivery, rather than relying on conventional therapies that exhibit multiple pernicious side-effects. Stability and specificity have traditionally been the core issues of peptide-based delivery vectors.

View Article and Find Full Text PDF

Self-assembled peptide hydrogels have emerged as alternatives to the conventional approaches employed in controlled drug release, wound-healing, and drug delivery, and as anti-infective agents. However, peptide hydrogels possessing antibacterial properties are less explored. In this work, we have designed three ultrashort antibacterial peptide hydrogels: Fmoc-FFH-CONH, Fmoc-FHF-CONH, and Fmoc-HFF-CONH.

View Article and Find Full Text PDF

Spatial confinement of excitons in the nano-crystalline region of semiconducting nanostructures differ significantly from the optoelectronic properties exhibited by the bulk material. We report spike-like absorption observed in the UV spectrum of a phenylalanine hexamer peptide [(Ff)-OH] nano-assembly, which may be attributed to the spatial confinement of electrons to the dimension of quantum dots. Interdependency of the UV and PLE spectrum of the peptide confirms the existence of quantum confinement in (Ff)-OH nano-assemblies.

View Article and Find Full Text PDF

We employed a reductionist approach in designing the first heterochiral tripeptide that forms a robust heterogeneous short peptide catalyst similar to the "histidine brace" active site of lytic polysaccharide monooxygenases. The histidine brace is a conserved divalent copper ion-binding motif that comprises two histidine side chains and an amino group to create the T-shaped 3N geometry at the reaction center. The geometry parameters, including a large twist angle (73°) between the two imidazole rings of the model complex, are identical to those of native lytic polysaccharide monooxygenases (72.

View Article and Find Full Text PDF

The ability to modulate self-assembly is the key to manufacture application-oriented materials. In this study, we investigated the effect of three independent variables that can modulate the catalytic activity of self-assembling peptides. The first two variables, amino acid sequence and its stereochemistry, were examined for their specific roles in the epitaxial growth and hydrogelation properties of a series of catalytic tripeptides.

View Article and Find Full Text PDF