Publications by authors named "Amato T Evan"

Feedbacks between the global dust cycle and the climate system might have amplified past climate changes. Yet, it remains unclear what role the dust-climate feedback will play in future anthropogenic climate change. Here, we estimate the direct dust-climate feedback, arising from changes in the dust direct radiative effect (DRE), using a simple theoretical framework that combines constraints on the dust DRE with a series of climate model results.

View Article and Find Full Text PDF

Clouds substantially affect Earth's energy budget by reflecting solar radiation back to space and by restricting emission of thermal radiation to space. They are perhaps the largest uncertainty in our understanding of climate change, owing to disagreement among climate models and observational datasets over what cloud changes have occurred during recent decades and will occur in response to global warming. This is because observational systems originally designed for monitoring weather have lacked sufficient stability to detect cloud changes reliably over decades unless they have been corrected to remove artefacts.

View Article and Find Full Text PDF

African dust emission and transport exhibits variability on diurnal to decadal timescales and is known to influence processes such as Amazon productivity, Atlantic climate modes, regional atmospheric composition and radiative balance and precipitation in the Sahel. To elucidate the role of African dust in the climate system, it is necessary to understand the factors governing its emission and transport. However, African dust is correlated with seemingly disparate atmospheric phenomena, including the El Niño/Southern Oscillation, the North Atlantic Oscillation, the meridional position of the intertropical convergence zone, Sahelian rainfall and surface temperatures over the Sahara Desert, all of which obfuscate the connection between dust and climate.

View Article and Find Full Text PDF

A large body of work has shown that year-to-year variations in North African dust emission are inversely proportional to previous-year monsoon rainfall in the Sahel, implying that African dust emission is highly sensitive to vegetation changes in this narrow transitional zone. However, such a theory is not supported by field observations or modeling studies, as both suggest that interannual variability in dust is due to changes in wind speeds over the major emitting regions, which lie to the north of the Sahelian vegetated zone. We reconcile this contradiction showing that interannual variability in Sahelian rainfall and surface wind speeds over the Sahara are the result of changes in lower tropospheric air temperatures over the Saharan heat low (SHL).

View Article and Find Full Text PDF

Throughout the year, average sea surface temperatures in the Arabian Sea are warm enough to support the development of tropical cyclones, but the atmospheric monsoon circulation and associated strong vertical wind shear limits cyclone development and intensification, only permitting a pre-monsoon and post-monsoon period for cyclogenesis. Thus a recent increase in the intensity of tropical cyclones over the northern Indian Ocean is thought to be related to the weakening of the climatological vertical wind shear. At the same time, anthropogenic emissions of aerosols have increased sixfold since the 1930s, leading to a weakening of the southwesterly lower-level and easterly upper-level winds that define the monsoonal circulation over the Arabian Sea.

View Article and Find Full Text PDF

Observations and models show that northern tropical Atlantic surface temperatures are sensitive to regional changes in stratospheric volcanic and tropospheric mineral aerosols. However, it is unknown whether the temporal variability of these aerosols is a key factor in the evolution of ocean temperature anomalies. We used a simple physical model, incorporating 26 years of satellite data, to estimate the temperature response of the ocean mixed layer to changes in aerosol loadings.

View Article and Find Full Text PDF